The American Statistician

ISSN: 0003-1305 (Print) 1537-2731 (Online) Journal homepage: www.tandfonline.com/journals/utas20

Taylor & Francis

Taylor & Francis Group

A Survey on Large Language Model-based Agents
for Statistics and Data Science

Sun Maojun, Ruijian Han, Binyan Jiang, Houduo Qi, Defeng Sun, Yancheng
Yuan & Jian Huang

To cite this article: Sun Maojun, Ruijian Han, Binyan Jiang, Houduo Qi, Defeng Sun, Yancheng
Yuan & Jian Huang (15 Sep 2025): A Survey on Large Language Model-based Agents for
Statistics and Data Science, The American Statistician, DOI: 10.1080/00031305.2025.2561140

To link to this article: https://doi.org/10.1080/00031305.2025.2561140

8 © 2025 The Author(s). Published with
license by Taylor & Francis Group, LLC.

A
h View supplementary material &

@ Accepted author version posted online: 15
Sep 2025.

N\
CJ/ Submit your article to this journal &

||I| Article views: 197

A
& View related articles &'

() View Crossmark data &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=utas20

https://www.tandfonline.com/journals/utas20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00031305.2025.2561140
https://doi.org/10.1080/00031305.2025.2561140
https://www.tandfonline.com/doi/suppl/10.1080/00031305.2025.2561140
https://www.tandfonline.com/doi/suppl/10.1080/00031305.2025.2561140
https://www.tandfonline.com/action/authorSubmission?journalCode=utas20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=utas20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00031305.2025.2561140?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00031305.2025.2561140?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2025.2561140&domain=pdf&date_stamp=15%20Sep%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2025.2561140&domain=pdf&date_stamp=15%20Sep%202025
https://www.tandfonline.com/action/journalInformation?journalCode=utas20

‘ W) Check for updates
A Survey on Large Language Model-based Agents for Statistics and Data Science

Maojun Sun?®, Ruijian Han?®, Binyan Jiang®, Houduo Qi*", Defeng Sun®, Yancheng
Yuan® and Jian Huang®®

*Corresponding authors.

* Department of Data Science and Avrtificial Intelligence, The Hong Kong Polytechnic
University

" Department of Applied Mathematics, The Hong Kong Polytechnic University

Abstract

In recent years, data science agents powered by Large Language Models (l=iMs), known as
“data agents,” have shown significant potential to transform the traditional data analysis
paradigm. This survey provides an overview of the evolution, capabilities;.and applications of
LLM-based data agents, highlighting their role in simplifying complex data tasks and
lowering the entry barrier for users without related expertise. Wewexplore current trends in the
design of LLM-based frameworks, detailing essential features such'as planning, reasoning,
reflection, multi-agent collaboration, user interface, knowledge integration, and system
design, which enable agents to address data-centric.problems.with minimal human
intervention. Furthermore, we analyze several case studies.to demonstrate the practical
applications of various data agents in real-world'scenarios. Finally, we identify key
challenges and propose future research directions'to advance the development of data agents
into intelligent statistical analysis software.

Keywords: data agents; generative Al; data'analysis; natural language interaction;
statistical software.

1 Introduction

As nearly every aspect of society becomes digitized, data analysis has emerged as an
indispensable tool acress various industries (Inala et al., 2024). For instance, financial
institutions leverage data analysis to make informed decisions about stock trends (Provost
and Fawcett,2013unstitute, 2011), hospitals utilize it to monitor patients’ health conditions
(Waller and'Fawcett, 2016), and companies employ it to develop strategic plans (Chen et al.,
2012). Despite its widespread utility, data analysis is often perceived as a challenging field
with a significant “entry barrier” (Cao, 2017; Jordan and Mitchell, 2015), typically requiring
knowledge in areas such as statistics, data science, and computer science (Kitchin, 2014).
Since the release of SPSS (IBM, 1968) in 1968, followed by SAS (Inc., 1976), Matlab
(MathWorks, 1984), Excel (Microsoft, 1985), Python (Foundation, 1991), R (for Statistical
Computing, 1995), PowerBI (Microsoft, 2013), and other specialized data analysis tools and
programming languages, these advancements have significantly aided professionals in
conducting statistical experiments and data analysis. Moreover, they have made data analysis
more accessible to a broader range of practitioners (Witten et al., 2016).

http://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2025.2561140&domain=pdf

The general data analysis process typically involves several key steps. Initially, data is
collected from studies or extracted from databases and imported into tools such as Excel.
Next, software like Excel or programming languages such as Python and R are employed to
clean and analyze the data, aiming to extract valuable insights. Subsequently, data
visualization is performed to make these insights more accessible and understandable. For
more complex tasks, such as statistical inference and predictive analysis, statistical and
machine learning models are often necessary. This involves data processing, feature
engineering, modeling, evaluation, and more. Upon completing the analysis, a final report is
usually drafted to summarize the findings and insights. However, for individuals without
expertise in statistics, data science, and programming, data analysis remains a high-barrier
task.

The barriers to data analysis primarily exist in the following areas:

» Lack of systematic statistical training: Individuals without a background in statistics may
find it challenging to understand which types of analysis are feasible, even when data is
presented to them. As data and models become increasingly complex, gaining.asolid
understanding of current statistical techniques typically requires at least a Master’s level of
statistical training.

* Software limitation: Simple data analysis tools like Excel are inadequate for complex
scenarios, such as predictive analysis or analyzing data from enterprise tatabases.
Conversely, advanced programming languages for data analysis, such as Python and R,
require prior programming knowledge, which can be a barrier forimany users.

* Challenges in domain-specific problems: In specialized fields like protein or genetic data
analysis, general data scientists may find it difficult to perform effective analysis due to a
lack of domain-specific knowledge.

* Difficulty in integrating domain knowledge: Corresponding to the last point, domain experts
often lack the data science and programming skills needed to quickly incorporate their
expertise into data analysis tools..For example, PSAAM (Steffensen et al., 2016) is software
designed for the curation and analysis of‘metabolic models, yet a biologist researching
metabolism might find it challenging to integrate this analytical method into common data
analysis tools like Excel orR.

With the rise of generative Al, new opportunities have emerged in statistics and data science.
LLM-based data agents are gradually addressing existing challenges while introducing a new
paradigm for approaching data analysis tasks.

An “Al agent” (or LLM agent) refers to an autonomous or semi-autonomous software system
powered by Al models such as LLMs. These agents can interpret natural language
instructions, plan and execute tasks, and interact with users or other systems to complete
complex workflows (Cheng et al., 2024).

Specifically, we define an LLM-based data agent as an autonomous or semi-autonomous
software system powered by LLMs, capable of understanding natural language instructions,
planning and executing data-centric tasks, and interacting with users or external tools to
accomplish complex objectives—from exploratory data analysis to machine learning model

development. In this paper, the terms “LLM-based data science agent,” “LLM-based data
agent,” and “data science agent” are collectively referred to as “data agent” for simplicity.

This survey explores recent advancements in data agents and highlights data analysis
performed by various agents through a series of case studies. In Section 2, we briefly discuss
the opportunities introduced by recent developments in generative Al. Section 3 reviews and
categorizes recent work on data science agents. We then present several case studies in
Section 4. Section 5 examines the challenges and future directions in this field, followed by
our discussion in Section 6. Finally, we present our conclusions in Section 7.

2 Opportunities Brought by Generative Al

The rise and potential of generative Al, particularly Large Language Models (LLMs) or
vision language models (VLMSs) in the field of data science and analysis have gained
increasing recognition in recent years. In addition to understand text, LLMs are also-trained
to understand tabular data, allowing them to effectively extract insights, identify patterns, and
draw meaningful conclusions from tables (Dong and Wang, 2024). Consequently,LLMs
have emerged as powerful tools capable of significantly enhancing and transforming a variety
of data-driven applications and workflows (Nejjar et al., 2023; Tu et al., 2023;/Cheng et al.,
2023). Recent research has focused on designing LLM-based data science.agents (data
agents) to automatically address data science tasks through natural‘language, as demonstrated
by tools like ChatGPT-Advanced Data Analysis (ChatGPT-ADA) (OpenAl, 2023),
LAMBDA (Sun et al., 2024) and Colab Data Science Agent (Google; 2025).

The emergence of data agents offers a potential solution to the previously mentioned
challenges, as they lower the entry barrier for users'who lack programming or statistical
knowledge. By providing an intuitive interface‘that harnesses the capabilities of LLMs, users
can request analyses using natural language, and the data agents can interpret these
instructions, access relevant data, and autonemously apply appropriate analytical techniques.
For example, a user might request, “Calculate the sales growth in different regions from 2021
to 2028, generate a bar chart to visualize thewresults, and provide key insights.” With this
simplified instruction, data agents.canautomatically extract, analyze, visualize, and report
data, reducing the requirement for technical expertise and fostering a more efficient
workflow. This significantly owers the entry barriers for individuals unfamiliar with
traditional data analysis teols:and-methods.

Furthermore, by embedding specialized knowledge into LLMs, data agents can potentially
overcome challenges faced by data scientists in fields like genomics, where domain expertise
is crucial (Cao, 2017). Simultaneously, domain experts who may lack data science or
programming skills can rely on data agents to seamlessly integrate their expertise into data
analysis workflows. This ability to bridge the gap between domain expertise and data science
has the potential to advance interdisciplinary research and decision-making in complex
scenarios.

3 LLM-based Data Science Agents

3.1 Overview

LLM-based data agents leverage the powerful natural language understanding and generation
capabilities of LLMs to autonomously tackle complex data analysis tasks. Figure 3 illustrates
a commonly used framework for these agents.

In this framework, the LLM serves as the core of the entire system, driving its performance
and reliability. As such, the capabilities of the LLM are critical to the system’s effectiveness,
with advanced models like GPT-4 often being used. Data analysis typically involves multiple
steps, especially when addressing complex tasks. Techniques such as Planning, Reasoning,
and Reflection help ensure that the LLM processes these tasks with greater logical coherence
and makes optimal use of its knowledge.

In the architecture, the LLM generates the code for a given data analysis task, executes it, and
retrieves the corresponding results. This requires an execution environment, represented by
the Sandbox, which safely isolates the code execution process. The Sandbox allows users to
run programs and access files without risking the underlying system or platform. It includes
pre-installed programming environments and software, such as Python, R, Jupyter, and SQL
Server.

A user-friendly interface is also essential to improving usability. An intuitive interface not
only attracts users but also enables them to quickly engage with and utilize the system
effectively.

3.2 Evolution of Data Science Agent

Research on data agents began gaining momentum in 2023.:.Chandel et al. (2022) trained and
evaluated a model within a Jupyter Notebook to predict code based on given commands and
results. Soon after, it was discovered that LLMs;such asisGPT, could generate accurate code
for basic data analysis. With the rise of the LLM-based agent, researchers began designing
special data agents for automating data science and analysis tasks by human language. Figure
2 shows some selected works from 2023,/while, Table 1 illustrates some key characteristics.

3.3 User Interface

The user interface is crucial for attracting users at first glance. Current research on user
interface design can be broadly categorized into four types: Integrated Development
Environment-based (IDE-based), Independent System, Command line-based (Command-
based), and Operation System-based (OS-based).

IDE-based, Integrated Development Environments (IDESs) such as Jupyter provide
convenient tools for data science and analysis. Recent efforts, including Colab Data Science
Agent (Google, 2025), Jupyter-Al (jupyterlab, 2023), Chapyter (chapyter, 2023), and
MLCopilot (Zhang et al., 2023a), have incorporated LLMSs into Jupyter environments. For
example, Colab Data Science Agent enables planning, automatic code cell generation,
execution, and result presentation in the notebook. This approach is particularly popular
because it allows users to review, edit, and run code directly.

Independent System Some works have focused on developing independent systems
equipped with user interfaces. For example, ChatGPT introduced a streamlined, intuitive
conversational system—a model of interaction that has been widely adopted in subsequent

projects. In the context of data analysis tasks, beyond basic text-based input and output,
several systems have introduced specialized features, such as visualization, report generation,
and file download options, to simplify user interactions. For instance, LAMBDA (Sun et al.,
2024) facilitates easy data review by enabling intuitive data display after users upload their
data. Data Formulator 2 (Wang et al., 2024a) further enhances the iterative process of
creating data visualizations through a multi-modal interface, combining graphical user
interface (GUI) elements with natural language inputs, allowing users to specify their
visualization intentions with both precision and flexibility. WaitGPT (Xie et al., 2024)
addresses the challenge of understanding and verifying LLM-generated code by transforming
raw code into an interactive, step-by-step visual representation. This allows users to
comprehend, validate, and adjust specific data operations, actively guiding and refining the
analysis process.

Command Line-based Works like Data Interpreter (Hong et al., 2024) and TaskWeaver
(Qiao et al., 2023) using command-line interfaces (CLI) in their works. For researchers-and
experienced users, it provides greater flexibility and control over the system, allowing users
to execute a wide range of functions in the command line and customize their actions:
Besides, command-based interfaces often require less computational overhead .compared to
graphical user interfaces, making them more efficient.

OS-based 0OS-based agents, such as UFO (Zhang et al., 2024), are designed to operate
directly within an operating system environment, allowing them,to control a wide range of
system tasks and resources. Similarly, Spider2-V (Cao et al.,.2024),simulates the typical
workflow of a data scientist by mimicking actions such as clicking, typing, and writing code,
providing an OS-level interactive experience that closely resembles how humans manage
data science tasks. However, while OS-based agentsilike/Spider2-V lay a solid foundation for
user interaction, achieving full automation of the data seience workflow remains an ongoing
challenge (Cao et al., 2024).

3.4 Planning, Reasoning, and Reflection

Planning, Reasoning, and Reflection‘often play crucial roles in guiding the actions of data
agents. In particular, planning and reasoning emphasize the generation of a logically
structured sequence or roadmap ofactions and thought processes to systematically address
problems step by step (Huang etial., 2024b; Hong et al., 2024). Complex tasks often require a
step-by-step approach to ensure effective resolution, while simpler tasks can be handled
without such detailed breakdowns. Recently, GPT-40 (OpenAl, 2024) introduces a planning
architecture that integrates external tools and decomposes complex tasks into structured sub-
tasks, enabling more accurate and controllable multi-step reasoning.

Some approaches focus on building conversational data agents (Zhang et al., 2023b, a; Sun et
al., 2024), where users interact with the agent over multiple rounds to complete a task. In
these cases, under human supervision, complex planning is not necessary, as guidance can
simplify decision-making and adjust the workflow dynamically. Some of these works operate
in a Basic I/0 mode. On the other hand, End-to-end data agents (Guo et al., 2024; Qiao et al.,
2023; Hong et al., 2024; Chi et al., 2024; Jiang et al., 2024; Li et al., 2024; Trirat et al., 2024;
Grosnit et al., 2024) are designed to allow users to issue a single prompt that encompasses all
requirements. In these cases, the agent employs planning, reasoning, and reflection to
iteratively complete all tasks autonomously.

Recent research in planning has introduced two main approaches: Linear Structure Planning
(or Single Path Planning/Reasoning) and Hierarchical Structure Planning (or Multiple Path
Planning/Reasoning). Figure 4 illustrates some recent planning methodologies like Chain-of-
Thought (CoT) (Wei et al., 2022), ReAct (Yao et al., 2022), Tree-of-Thoughts (ToT) (Yao et
al., 2024), and Graph-of-Thoughts (GoT) (Besta et al., 2024).

Linear Structure Planning In linear structure planning, a task is decomposed into a
sequential, step-by-step process. For example, DS-Agent (Guo et al., 2024) utilizes Case-
Based Reasoning to retrieve and adapt relevant insights from a knowledge base of past
successful Kaggle solutions. This approach allows the agent to learn from previous
experiences and continuously improve its performance. Similarly, AutoML-Agent (Trirat et
al., 2024) adopts a retrieval-augmented planning (RAP) strategy to generate diverse plans for
AutoML tasks. By leveraging the knowledge embedded in LLMs, information retrieved from
external APIs, and user requirements, RAP allows the agent to explore a wider range of
potential solutions, leading to more optimal plans.

Hierarchical Structure Planning Simple linear planning is often insufficient for complex
tasks. Such tasks may require hierarchical and dynamic, adaptable plans that ¢an acecount for
unexpected issues or errors in execution (Hong et al., 2024). For instance; Hong et al. (2024)
utilizes a hierarchical graph modeling approach that breaks down intricate data science
problems into manageable sub-problems, represented as nodes in a.graph, with their
dependencies as edges. This structured representation enables dynamic task management and
allows for real-time adjustments to evolving data and requirements. Additionally, they further
introduce “Programmable Node Generation,” to automate the generation, refinement, and
verification of nodes within the graph, ensuring accurate’and robust code generation. AIDE
(Jiang et al., 2024) employs Solution Space Tree Search to iteratively improve solutions
through generation, evaluation, and selection components. Similarly, SELA (Chi et al., 2024)
combines LLMs with Monte Carlo Tree Search (MCTS) to enhance AutoML performance. It
starts by using LLMs to generate insights for various machine learning stages, creating a
search space for solutions. MCTS then explores this space by iteratively selecting,
simulating, and back-propagating feedback;.enabling the discovery of optimal pipelines.
Agent K v1.0 (Grosnit et al., 2024), employs a structured reasoning framework with memory
modules, operating through multiple phases. The first phase, automation, handles data
preparation and task setup, gemerating-actions through structured reasoning. The second
phase, optimization, involyves selving tasks and enhancing performance using techniques such
as Late-Fusion Model Generation‘and Bayesian optimization. The final phase, generalization,
utilizes a memory-driven system for adaptive task selection.

Reflection Reflectian enables an agent to evaluate past actions and decisions, adjust
strategies, andsimprove future task performance. This process is essential for self-correction
and debugging during task execution. For example, Wang et al. (2024b) employs trajectory
filtering to train agents that can learn from interactions and enhance their self-debugging
capabilities. This technique involves selecting trajectories in which the model initially makes
errors but successfully corrects them through self-reflection in subsequent interactions.
Similarly, Data-copilot (Zhang et al., 2023b) and LAMBDA (Sun et al., 2024) use self-
reflection based on code execution feedback to address errors. If a compilation error occurs,
the agents repeatedly attempt to revise the code until it runs successfully or a maximum retry
limit is reached. This iterative process helps ensure code correctness and usability.

3.5 Multi-agent Collaboration

Multi-agent System (MAS) enable task decomposition through role assignment. In this setup,
agents communicate, negotiate, and share information to optimize their collective
performance (Xi et al., 2023). It offers several advantages over single-agent setups. First, they
reduce redundant and complex context accumulation by isolating responsibilities across
agents. Second, each agent instance can be powered by a different language model, opening
opportunities to specialize models for domain-specific expertise. For example, in LAMBDA
(Sun et al., 2024), a dedicated Programmer Agent is responsible for code generation, while
noisy error outputs are handled separately by an Inspector Agent. This separation helps the
Programmer Agent avoid context overload, simplifies historical trace management, and
ultimately improves response accuracy.

AutoGen introduces a programming framework specifically designed for constructing MAS
(Wu et al., 2023). Furthermore, AutoML-Agent (Trirat et al., 2024) involves the Agent
Manager, Prompt Agent, Operation Agent, Data Agent, and Model Agent—that together
cover the entire pipeline, from data retrieval to model deployment. OpenAgents (Xie.etal.,
2023) consisted of agents such as the Data Agent, Plugins Agent, and Web Agent: Similarly,
AutoKaggle (Li et al., 2024) employs agents like Reader, Planner, Developer, Reviewer, and
Summarizer to manage each phase of the process, ensuring comprehensive analysis; effective
planning, coding, quality assurance, and detailed reporting. These collabaorating mode help
decentralized the complicated task, allowing each agent to focus on its'specific role, thereby
enhancing the overall efficiency and effectiveness of the data analysissprocess.

3.6 Knowledge Integration

Integrating domain-specific knowledge into data agents presents a challenge (Dash et al.,
2022; Sun et al., 2024). For example, when a domainexpert has specialized knowledge, such
as specific protein analysis code, the agent system are expected able to incorporate and apply
this knowledge effectively. One approach is tool-based, where the expert’s analysis code is
treated as a tool that is recognizable by the LLM (Xie et al., 2023). When the agent
encounters a relevant problem, it can calliuponithe appropriate tool from its library to execute
the specialized analysis. Another method invelves the Retrieval-Augmented Generation
(RAG) technique (Lewis et al., 2020),where relevant code is first retrieved and then
embedded within the context to.facilitate in-context learning. LLM-based agents can also
access and interact with external knowledge sources, such as databases or knowledge graphs,
to augment their reasoningcapabilities (Wang et al., 2024b).

Sun et al. (2024) proposes.a Knowledge Integration method that builds on this concept. In
LAMBDA, analysis codes are parsed into two parts: descriptions and executable code. These
are then stored in‘a knowledge base. When the agent receives a task, it retrieves the relevant
knowledge based.on the similarity between the task description and the descriptions stored in
the knowledge base. The corresponding code is then used for in-context learning (ICL) or
back-end execution, depending on the configuration. This approach enables agents to
effectively leverage domain-specific knowledge in relevant scenarios.

3.7 Benchmarks for Evaluating Data Agents

Evaluating the performance of data agents is crucial for understanding their effectiveness and
reliability. Current benchmarks primarily rely on deterministic output comparisons, where an
LLM processes a task, generates code, and is evaluated based on the final execution results.

For example, DS-1000 (Lai et al., 2022) provides a large-scale benchmark of 1000 realistic
problems spanning seven core Python data science libraries, with execution-based multi-
criteria evaluation and mechanisms to reduce memorization bias. MLAgentBench (Huang et
al., 2024a) introduces a benchmark focused on machine learning research workflows by
constructing an LLM-agent pipeline. Furthermore, InfiAgent-DABench (Hu et al., 2024)
presents a end-to-end benchmark for evaluating the capabilities of data agents, the tasks
require agents to end-to-end solving complex tasks by interacting with an execution
environment. However, for tasks such as data visualization, the outputs are often difficult to
compare directly. Designing effective evaluation strategies for data visualizations remains an
open and important question.

3.8 System Design and Other Related Works

Recent advancements in interactive data science systems highlight a variety of approaches in
system design, with LLMs and structured frameworks significantly enhancing the user
experience across key areas such as data visualization, task specification, predictive
modeling, and data exploration. Notable systems like VIDS (Hassan et al., 2023),\Data-
Copilot (Zhang et al., 2023b), InsightPilot (Ma et al., 2023), and JarviX (Liu etal., 2023)
exemplify diverse design principles tailored to these specific functions. For instance, Data-
Copilot adopts a code-centric approach, generating intermediate codesto proeess data and
subsequently transforming it into visual outputs, such as charts, tables, and summaries
(Zhang et al., 2023Db).

Other frameworks emphasize workflow automation. InsightPilot integrates an “insight
engine” that guides data exploration, reducing LLM hallueinations and enhancing the
accuracy of exploratory tasks (Ma et al., 2023). JarviX, in.combination with MLCopilot
(Zhang et al., 2023a), contributes to automated:machine‘learning by merging LLM-driven
insights with AutoML pipelines. Additionally, in‘the'domain of database management,
systems like LLMDB (Zhou et al., 2024) improve efficiency and reduce hallucinations and
computational costs during tasks such as query.rewriting, database diagnosis, and data
analytics. In terms of data visualization,;"MatPlotAgent (Yang et al., 2024) transforms raw
data into clear, informative visualizations by leveraging both code-based and multi-modal
LLMs.

Moreover, Data Formulater2,(Wang et al., 2024a) organizes user interactions into ’data
threads” to provide context’and facilitate the exploration and revision of prior steps. A similar
approach is seen in WaitGPT (Xie et al., 2024), which transforms raw code into an interactive
visual representation. This provides a step-by-step visualization of LLM-generated code in
real-time, allowing users to understand, verify, and modify individual data operations. SEED
(Chen et al.; 2024) combines LLMs with methods like code generation and small models to
produce domain-specific data curation solutions. HuggingGPT (Shen et al., 2024), on the
other hand, uses LLMs to coordinate a variety of expert models from platforms such as
Hugging Face, solving a broader range of Al tasks across multiple modalities.

Lastly, in terms of industry applications, lots of companies have used agents in the business
analysis. For example FUTU use Al to analyze the stock market and provide investment
advice (FUTU, 2024). Julius (Julius, 2025) facilitates data science education by building a
bridge that allowing professors to create interactive workflows for lessons, which can be
shared with students for a seamless teaching experience through natural language interaction.

4 Data Analysis Through Natural Language Interaction: Case Studies

In this section, we present a series of case studies conducted by a diverse range of agents,
each illustrating the new data analysis paradigm facilitated through natural language
interaction. These case studies demonstrate how this approach enables users to engage with
data more intuitively and effectively, breaking down traditional barriers to data accessibility
and understanding. By leveraging natural language processing, these agents can interpret and
respond to complex queries, providing insights that are both comprehensive and easily
digestible. Through these examples, we aim to highlight the transformative potential of
natural language interaction in data analysis.

4.1 Case study 1: Exploratory Data Analysis and Model Building by
Conversational Data Agents

In this case study, we utilized ChatGPT and LAMBDA to demonstrate exploratory data
analysis (EDA) and a simple model building process. Specifically, we first used'ChatGPT to
explore the effect of alcohol content on the quality of different types of wine;focusingen
both red and white varieties. Then, we used LAMBDA to illustrate an interactive.modeling
process and automatically generate analysis reports.

We used the Wine Quality dataset, a tabular dataset with dimension 4898x11. The goal is to
examine how 10 coviarates in this dataset affect the wine quality rating. We employed
ChatGPT-ADA to conduct EDA and visualize the influence.of aleohol content on wine
quality ratings. Figure 5 illustrates the detailed planningand preblem-solving process.

GPT-ADA first analyzed the problems and then outlined a step-by-step plan to solve the
tasks. The entire workflow proceeded smoothly,with the code running efficiently to load the
data, check for missing values, and generate visualizations, with each step delivering accurate
results. Its ability to interpret data and pravide.insights significantly streamlined the
analytical process. Finally, it provided.insights into the relationship between quality scores
and alcohol content.

Next, we train a set of models to predict wine quality using LAMBDA. LAMBDA facilitates
an interactive analysis process, enabling us to perform tasks such as data processing, feature
engineering, model trainingsparameter tuning, and evaluation through a series of guided
conversations. Finally, we used LAMBDAs built-in report generation feature to compile a
analysis report, whichiincludes details of the tasks completed in the conversation history. The
analysis process, including the conversation and the generated report, is presented in Figure
6.

As beginner-level users, we first asked LAMBDA to recommend some models, and it
suggested advanced options like XGBoost. Next, we tasked LAMBDA with basic data
preprocessing, which it handled correctly. We then trained and evaluated the recommended
models using 5-fold cross-validation, a task LAMBDA performed exceptionally well, even
providing download links for the resulting models. Finally, we used LAMBDAs report
generation feature to create a structured and comprehensive report that effectively captured
the key insights.

This example demonstrates the effectiveness of conversational data agents like ChatGPT and
LAMBDA in streamlining the data visualization and machine learning workflow, particularly
for users without programming experience.

4.2 Case Study 2: Residual Diagnostics and Heteroskedasticity Testing

To examine the ability of LLM-based data agents to perform statistically rigorous regression
diagnostics, we prompted LAMBDA and GPT-40 to conduct a linear regression analysis
using the Auto MPG dataset, a tabular data with dimension of 398 times 7. The goal was to
predict mpg (miles per gallon) based on vehicle characteristics, notably horsepower and
weight. The prompt and response of LAMBDA are detailed in the figure 7.

LAMBDA correctly loaded the dataset, performed appropriate preprocessing (e.g., handling
non-numeric entries), and fit a linear model using statsmodels. It then computed and
visualized residuals, followed by executing the Breusch—Pagan test for heteroskedastieity:
The test output included the LM statistic and associated p-value, indicating a strong,violation
of the homoskedasticity assumption.

The residual plot visually confirmed increasing residual variance with larger fitted values.
LAMBDA also summarized next steps, suggesting robust standard errors-er model
transformation to address heteroskedasticity. This example demonstrates LAMBDA’s ability
to execute, interpret, and communicate statistically meaningful diagnastics in a flexible code-
first environment. Besides, GPT-40 was also able to complete the same task successfully;
further details and chat transcripts can be found in the supplementary materials.

4.3 Case Study 3: Bootstrap Confidence Intervals

In this case study, we assessed whether LIeM-based data agents can perform non-parametric
inference through bootstrap resampling. Using the Wine Quality dataset, the task was to
estimate the average alcohol content for red wine and construct a 95% confidence interval
using 1000 bootstrap resamples. Figure 7 shows the interaction with LAMBDA for
completing this task.

LAMBDA successfully filtered,the dataset to isolate red wines, extracted the alcohol
variable, and implemented the bootstrap routine by repeatedly sampling with replacement. It
then computed the empirical-2.5th and 97.5th percentiles of the bootstrapped means to form
the confidence interyval. The agent also produced a histogram showing the bootstrap
distribution, overlaid with the CI bounds and sample mean.

This case illustrates that LAMBDA is capable of performing robust uncertainty quantification
and generating high-quality visual explanations without relying on strict parametric
assumptions. GPT-40 also successfully completed this task; its outputs and detailed
interactions are included in the supplementary materials.

We found that different prompting may lead to differences in implementation details, such as
the choice of hyperparameters or types of plots.

4.4 Case study 4: Expandability of Data Agents

In many situations, we encounter tasks that cannot be handled effectively using LLMs
because their training data do not include the necessary knowledge for such tasks. In these
cases, if a data agent is designed to be extensible, manual tool expansion or knowledge
integration can address this limitation. In this case study, we demonstrate how both the Data
Interpreter and LAMBDA leverage integration mechanisms to incorporate additional
packages or domain-specific knowledge.

Tools Integration in Data Interpreter In this example, our objective is to extract
submission deadlines for Al conferences from a public website * and save the results. We
prompted the agent with the target URL and the desired output format. The agent
successfully identified relevant information such as conference names and deadlines and
generated structured output. The complete workflow, including prompt, execution, and
results, is shown in Figure 8.

In this example, the Data Interpreter began with an initial plan. For each sub-task, it
recommended relevant tools with a score indicating their suitability. The system then decided
whether to use the suggested tool. For instance, it used scrape web playwright“fora
web-scraping task. This iterative recommendation and tool selection process continued until
all sub-tasks were completed, addressing limitations in LLMs’ built-in abilities and
knowledge.

Knowledge Integration in LAMBDA In this example, we consider thé problem of training a
Fixed Point Non-Negative Neural Network (FPNNN), whichsis,defined as a neural network
that maps nonnegative vectors to nonnegative vectors. We train a FPNNN with MNIST data.
First, we integrated the code into the knowledge base. Then; we defined the model as Core
and delineated the Core function, which directly accepts parameters, and the Runnable
function, which was defined and executed separately. Figure 6 presents the configuration,
prompt, and problem-solving process.

LAMBDA first retrieved the relevant code from the knowledge base, and then its Core
function was presented in the contexty'By modifying the core code, LAMBDA generated the
correct code and completed the task successfully.

5 Challenges and Future Directions

In this section, we highlight.seme challenges and suggest future directions in using LLMs or
LLM-based data agents for statistical analysis.

5.1 Challenges in the Capabilities of LLMs

LLMs function as the “brain” of a data agent, interpreting user intent and generating
structured plans to carry out data analysis tasks. For a data agent to be effective, it must
possess advanced knowledge in statistics, data science, and programming, enabling it to
support users throughout the analytical process.

Advanced Models Current state-of-the-art models like GPT-4 show strong performance
on undergraduate-level mathematics and statistics problems, yet struggle with more
advanced, graduate-level tasks (Frieder et al., 2023). Additionally, the success rate of fully
automating complete data workflows with current agents remains low (Cao et al., 2024). This

suggests that enhancements in LLMs, particularly in knowledge of statistics and data
analysis, are still needed.

Multi-Modality and Reasoning A key challenge for current LLMs lies in processing multi-
modal inputs, including charts, tables, and code, which are essential to data analysis
workflows (Inala et al., 2024). Future advancements may improve the ability to perform
reasoning across mixed modalities, such as generating visualizations by replicating the style
of an input visualization.

5.2 Challenges in Statistical Analysis

Intelligent Statistical Analysis Software While established tools such as SPSS and R are
highly mature, data agents have the potential to transform statistical analysis through
intelligent assistance. To realize this vision, agents must support flexible package integration,
facilitate contributions from domain experts, and remain aligned with evolving programming
ecosystems. Such a collaborative framework could accelerate innovation in the field.
Furthermore, by guiding users and recommending appropriate methods, data agents can
enhance research efficiency and expand access to advanced statistical techniques.

Incorporating Other Large Models into Statistical Analysis Statistical analysis of
complex data is increasingly leveraging representations generated by large models for
research purposes. For example, in predicting the tertiary structure of proteins, LLMs can
utilize representations of primary and secondary structures—apabilities that traditional
statistical software such as Matlab and R currently lack. Similarly; in the analysis of
electronic health records, LLMs are being used to constructimeaningful representations that
facilitate downstream analysis. If data agents can effectively harness domain-specific
knowledge models, they have the potential to significantly advance statistical and data
science research, enabling more sophisticated analyses and fostering deeper insights across
scientific disciplines.

5.3 Challenges in Real-World"Adoption

Although the data agents have shown,great potential in improving the accessibility of data
analysis, there are still several challenges that need to be addressed for real-world adoption.

Trade-off Between Hardware and Privacy First, deploying large language models often
requires high-performance computing resources. Running these models on CPU-only
machines resultsin slowinference. API-based solutions also raise concerns about data
privacy andssecurity,.as sensitive information may be transmitted to external servers. This is
especially criticalin fields such as healthcare and finance, where data confidentiality is
paramount. Therefore, developing lightweight, expert-level data science models that can run
efficiently on local machines without compromising performance is essential.

High-concurrency System High-concurrency environments pose significant scalability
issues. In client-server architectures where each user session is associated with an isolated
sandbox for secure code execution, the server may experience substantial resource strain
under heavy load. Maintaining a large number of concurrent sandboxes can overwhelm
system resources, leading to degraded performance or system instability. Therefore, the

design of efficient scheduling algorithms to manage limited computational resources across
multiple sandbox instances becomes critical.

Integration with Existing Workflows While data agents excel in lowering the barrier to
entry for non-programmers, they currently lack the flexibility and debugging capabilities of
traditional IDEs. This makes them less suitable for complex, customized workflows that
require iterative development and fine-grained control. A promising direction is to support
the seamless export of an agent’s actions (Sun et al., 2024), such as executed code, into IDEs
like Jupyter Notebooks, which can serve as a bridge for smoother integration with
conventional tools and workflows.

6 Discussion

6.1 Model Level Reproducibility

While data agents are generally robust to variations in prompt phrasing and can«eliably
complete the intended analytical tasks, we observed notable differences in their reasoning
processes and implementation details. For example, when prompted to performregression
diagnostics, different phrasings such as “analyze residuals” versus “check model
assumptions” resulted in the same core analysis but with different statistieal tests or plotting
choices. Similarly, in visualization tasks, one prompt might produce.a bar‘chart while another
yields a pie chart, depending on how the goal is described. Even for model training, default
hyperparameters, such as learning rate or number of iterations, could vary slightly across
prompts, leading to differences in performance metrics. Fhesevariations do not typically
prevent task completion but can impact result interpretability;«especially in rigorous statistical
workflows where consistency across runs is critical.

6.2 System Level Reproducibility

Experiment Setting Experiment reproducibility can be enhanced through careful experiment
designs. For example, LAMBDA (Sun.et al., 2024) incorporates built-in mechanisms to
export the full execution history into executable formats such as Jupyter Notebooks. When
combined with proper experiment.controls, such as setting random seeds, these exports
enable end-to-end reproducibility of experimental results. In addition, designing human-in-
the-loop mechanisms allows usersito inspect, edit, or revise the code generated by LLMs
during the problem-selvingsprocess. This interactive approach further supports
reproducibility by.enabling manual correction and verification of intermediate steps.

Version Cantrol and Workflow Management Version control tools such as Git can
enhance reproducibility by tracking changes in code, data, and prompts, making it easier to
reproduce results and collaborate with others. Furthermore, workflow management systems
like Snakemake and Nextflow allow users to define and automate each step of the analysis
pipeline, ensuring that processes can be reliably repeated. When used alongside data agents,
these tools can greatly improve both reproducibility and transparency. However, most current
data agents lack native support for these tools, presenting opportunities for future
development.

7 Conclusion

This survey has explored the recent progress of LLM-based data science agents. These agents
have shown great potential in making data analysis more accessible to a wider range of users,
even those with limited technical skills. By leveraging the capabilities of LLMs, they are able
to handle various data analysis tasks, from data visualization to machine learning, through
natural language interaction.

However, as discussed, they also face several challenges. In terms of model capabilities,
improvements are needed in domain-specific knowledge and multi-modal handling. For
intelligent statistical analysis software, seamless package management and community
building are crucial. Additionally, effectively integrating other large models into statistical
analysis and addressing data infrastructure and evaluation issues remain important areas for
future development.

Overall, while LLM-based data science agents have made significant strides, continugus
research and innovation are required to overcome the existing challenges and fully realize
their potential in revolutionizing the field of data analysis.

Acknowledgments

The authors are grateful to the Editor, Associate Editor and two anonymous‘reviewers for
their valuable comments and suggestions, which significantly impreved the quality of the

paper.
Funding

This work was funded by the Centre for the MathematicalFoundations of Generative Al and
the research grants from The Hong Kong Polytechnic University (P0046811). The research of
Ruijian Han was partially supported by The Hong'Kong RGC grant (14301821) and The
Hong Kong Polytechnic University (P0044617, P0045351, P0050935). The research of
Binyan Jiang was partially supported by The Hong Kong RGC grant (15302722). The
research of Houduo Qi was partially supported by the Hong Kong RGC grant (15309223) and
The Hong Kong Polytechnic University (P0045347). The research of Defeng Sun and
Yancheng Yuan was partially supported by the Research Center for Intelligent Operations
Research at The Hong Kong Pelytechnic University (P0051214). The research of Jian Huang
was partially supported by The Hong Kong Polytechnic University (P0042888, P0045417,
P0045931).

Disclosure Statement

The authors ‘reportthere are no competing interests to declare.

References

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Podstawski, M., Gianinazzi, L., Gajda,
J., Lehmann, T., Niewiadomski, H., Nyczyk, P., et al. (2024). Graph of thoughts: Solving
elaborate problems with large language models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 17682-17690.

Cao, L. (2017). Data science: Challenges and directions. Communications of the ACM,
60(8):59-68.

Cao, R, Lei, F., Wu, H., Chen, J., Fu, Y., Gao, H., Xiong, X., Zhang, H., Mao, Y., Hu, W.,
Xie, T., Xu, H., Zhang, D., Wang, S., Sun, R., Yin, P., Xiong, C., Ni, A,, Liu, Q., Zhong, V.,
Chen, L., Yu, K., and Yu, T. (2024). Spider2-v: How far are multimodal agents from
automating data science and engineering workflows?

Chandel, S., Clement, C. B., Serrato, G., and Sundaresan, N. (2022). Training and evaluating
a jupyter notebook data science assistant. arXiv preprint arXiv:2201.12901.

chapyter (2023). Chapyter. https://github.com/chapyter/chapyter.

Chen, H., Chiang, R. H., and Storey, V. C. (2012). Business intelligence and analytics:./rom
big data to big impact. MIS quarterly, 36(4):1165-1188.

Chen, Z., Cao, L., Madden, S., Kraska, T., Shang, Z., Fan, J., Tang, N., Gu, Z Liu, € and
Cafarella, M. (2024). Seed: Domain-specific data curation with large language.models."arxiv
2023. arXiv preprint arXiv:2310.00749.

Cheng, L., Li, X., and Bing, L. (2023). Is gpt-4 a good data analyst? arXiv. preprint
arXiv:2305.15038.

Cheng, Y., Zhang, C., Zhang, Z., Meng, X., Hong, S., Li, W., Wang, Z., Wang, Z., Yin, F.,
Zhao, J., et al. (2024). Exploring large language model based intelligent agents: Definitions,
methods, and prospects. arXiv preprint arXiv:2401.03428.

Chi, Y., Lin, Y., Hong, S., Pan, D., Fei, Y., Mel,'G.,"Liu, B., Pang, T., Kwok, J., Zhang, C., et
al. (2024). Sela: Tree-search enhanced lIm-agents for automated machine learning. arXiv
preprint arXiv:2410.17238.

Dash, T., Chitlangia, S., Ahuja, A.,and'Srinivasan, A. (2022). A review of some techniques
for inclusion of domain-knowledgeuinto deep neural networks. Scientific Reports, 12(1):1040.

Dong, H. and Wang, Z. (2024). Large language models for tabular data: Progresses and
future directions. In Proceedings of the 47th International ACM SIGIR Conference on
Research and Development'in Information Retrieval, SIGIR ’24, page 2997-3000, New
York, NY, USA. Association for Computing Machinery.

for Statistical Computing, R. F. (1995). R: A Language and Environment for Statistical
Computing.

Foundation, P. S. (1991). Python Programming Language.

Frieder, S., Pinchetti, L., Chevalier, A., Griffiths, R.-R., Salvatori, T., Lukasiewicz, T.,
Petersen, P. C., and Berner, J. (2023). Mathematical capabilities of chatgpt.

FUTU (2024). Futubull ai.

GLM, T. (2024). Chatglm: A family of large language models from glm-130b to gim-4 all
tools.

Google (2025). Data science agent in colab with gemini.
https://developers.googleblog.com/en/data-science-agent-in-colab-with-gemini/. Accessed:
2025.

Grosnit, A., Maraval, A., Doran, J., Paolo, G., Thomas, A., Beevi, R. S. H. N., Gonzalez, J.,
Khandelwal, K., lacobacci, I., Benechehab, A., et al. (2024). Large language models
orchestrating structured reasoning achieve kaggle grandmaster level. arXiv preprint
arXiv:2411.03562.

Guo, S., Deng, C., Wen, Y., Chen, H., Chang, Y., and Wang, J. (2024). Ds-agent: Automated
data science by empowering large language models with case-based reasoning. arXivepreprint
arXiv:2402.17453.

Hassan, M. M., Knipper, A., and Santu, S. K. K. (2023). Chatgpt as your personal data
scientist. arXiv preprint arXiv:2305.13657.

Hong, S., Lin, Y., Liu, B., Wu, B., Li, D., Chen, J., Zhang, J., Wang, J:;"Zhang, L., Zhuge,
M., et al. (2024). Data interpreter: An lIm agent for data science. arXivpreprint
arXiv:2402.18679.

Hu, X., Zhao, Z., Wei, S., Chai, Z., Ma, Q., Wang, G., Wang, X., Su, J., Xu, J., Zhu, M, et al.
(2024). Infiagent-dabench: Evaluating agents on data analysis tasks. arXiv preprint
arXiv:2401.05507.

Huang, Q., Vora, J., Liang, P., and Leskovec, J. (2024a). Mlagentbench: Evaluating language
agents on machine learning experimentation.

Huang, X., Liu, W., Chen, X., Wang, X, Wang, H., Lian, D., Wang, Y., Tang, R., and Chen,
E. (2024b). Understanding the planning of:llm agents: A survey. arXiv preprint
arXiv:2402.02716.

IBM (1968). SPSS Statisties:

Inala, J. P., Wang, C4 Drucker, S., Ramos, G., Dibia, V., Riche, N., Brown, D., Marshall, D.,
and Gao, J. (2024)=Data analysis in the era of generative ai. arXiv preprint
arXiv:2409,18475.

Inc., S. I. (1976). SAS Software.

Institute, M. G. (2011). Big data: The next frontier for innovation, competition, and
productivity. McKinsey & Company.

Jiang, Z. et al. (2024). AIDE: the Machine Learning CodeGen Agent.
https://github.com/WecoAl/aideml. Accessed: 2024-08-29.

Jordan, M. I. and Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255-260.

Julius (2025). Julius ai.
jupyterlab (2023). Jupyter-ai. https://github.com/jupyterlab/jupyter-ai.

Kitchin, R. (2014). The data revolution: Big data, open data, data infrastructures and their
consequences. Sage.

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettlemoyer, L., tau Yih, S. W., Fried, D.,
Wang, S., and Yu, T. (2022). Ds-1000: A natural and reliable benchmark for data science
code generation.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kiittler, H., Lewis, M.,
Yih, W.-t., Rocktaschel, T., et al. (2020). Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Processing Systems, 33:9459-94¢4.

Li, Z., Zang, Q., Ma, D., Guo, J., Zheng, T., Niu, X., Yue, X., Wang, Y., Yang, J4Liu,J., et
al. (2024). Autokaggle: A multi-agent framework for autonomous data science competitions.
arXiv preprint arXiv:2410.20424.

Liu, S.-C., Wang, S., Chang, T., Lin, W., Hsiung, C.-W., Hsieh, Y.-CsCheng, Y.-P., Luo, S.-
H., and Zhang, J. (2023). Jarvix: A llm no code platform for tabular data analysis and
optimization. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pages 622—630.

Luo, D., Feng, C., Nong, Y., and Shen, Y. (2024). Autom3l; An automated multimodal
machine learning framework with large language models. In Proceedings of the 32nd ACM
International Conference on Multimedia, pages.8586-8594.

Ma, P., Ding, R., Wang, S., Han, S., and Zhang, D.(2023). Insightpilot: An lIm-empowered
automated data exploration system. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing::System Demonstrations, pages 346-352.
MathWorks (1984). MATLAB.

Microsoft (1985). Microsoft-Exeel:

Microsoft (2013). Power BI.

Nejjar, M., Zacharias, L., Stiehle, F., and Weber, 1. (2023). LIms for science: Usage for code
generation and'data analysis. Journal of Software: Evolution and Process, page e2723.

OpenAl (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774.
OpenAl (2024). Gpt-40 system card.

Provost, F. and Fawcett, T. (2013). Data science and its relationship to big data and data-
driven decision making. Big data, 1(1):51-59.

Qiao, B., Li, L., Zhang, X., He, S., Kang, Y., Zhang, C., Yang, F., Dong, H., Zhang, J.,
Wang, L., et al. (2023). Taskweaver: A code-first agent framework. arXiv preprint
arXiv:2311.17541.

Shen, Y., Song, K., Tan, X., Li, D., Lu, W., and Zhuang, Y. (2024). Hugginggpt: Solving ai
tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36.

Steffensen, J. L., Dufault-Thompson, K., and Zhang, Y. (2016). Psamm: A portable system
for the analysis of metabolic models. PLOS Computational Biology, 12(2):1-29.

Sun, M., Han, R., Jiang, B., Qi, H., Sun, D., Yuan, Y., and Huang, J. (2024). Lambda: A
large model based data agent. arXiv preprint arXiv:2407.17535.

Trirat, P., Jeong, W., and Hwang, S. J. (2024). Automl-agent: A multi-agent lIm frameweork
for full-pipeline automl. arXiv preprint arXiv:2410.02958.

Tu, X., Zou, J., Su, W. J., and Zhang, L. (2023). What should data science education do with
large language models?

Waller, M. A. and Fawcett, S. E. (2016). Data science, predictive analytics, and big data: A
revolution that will transform supply chain design and management. Journal of Business
Logistics, 37(1):55-62.

Wang, C., Lee, B., Drucker, S., Marshall, D., and Gao, J. (2024a). Data formulator 2:
Iteratively creating rich visualizations with ai. arXiv preprint arXiv:2408.16119.

Wang, X., Chen, Y., Yuan, L., Zhang, Y., Li, Y.Peng, H., and Ji, H. (2024b). Executable
code actions elicit better 1lm agents. arXiv preprintarXiv:2402.01030.

Wei, J., Wang, X., Schuurmans, D., Besma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al.
(2022). Chain-of-thought prompting ‘eliCits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837.

Witten, 1. H., Frank, E., and-Hall,-M. A. (2016). Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann.

Wu, Q., Bansal, GipZhang, J., Wu, Y., Zhang, S., Zhu, E., Li, B., Jiang, L., Zhang, X., and
Wang, C. (2023)..Autogen: Enabling next-gen llm applications via multi-agent conversation
framework: arXiv. preprint arXiv:2308.08155.

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang, M., Wang, J., Jin, S., Zhou,
E., etal. (2023). The rise and potential of large language model based agents: A survey. arXiv
preprint arXiv:2309.07864.

Xie, L., Zheng, C., Xia, H., Qu, H., and Zhu-Tian, C. (2024). Waitgpt: Monitoring and
steering conversational llm agent in data analysis with on-the-fly code visualization. arXiv
preprint arXiv:2408.01703.

Xie, T., Zhou, F., Cheng, Z., Shi, P., Weng, L., Liu, Y., Hua, T. J., Zhao, J., Liu, Q., Liu, C.,
et al. (2023). Openagents: An open platform for language agents in the wild. arXiv preprint
arXiv:2310.10634.

Yang, Z., Zhou, Z., Wang, S., Cong, X., Han, X., Yan, Y., Liu, Z., Tan, Z., Liu, P., Yu, D., et
al. (2024). Matplotagent: Method and evaluation for [Im-based agentic scientific data
visualization. arXiv preprint arXiv:2402.11453.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., and Narasimhan, K. (2024). Tree
of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., and Cao, Y. (2022). React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629.

Zhang, C., Li, L., He, S., Zhang, X., Qiao, B., Qin, S., Ma, M., Kang, Y., Lin,Q.,«Rajmohan,
S., etal. (2024). Ufo: A ui-focused agent for windows os interaction. arXiv preprint
arXiv:2402.07939.

Zhang, L., Zhang, Y., Ren, K., Li, D., and Yang, Y. (2023a). Mlcopilet’ Unleashing the
power of large language models in solving machine learning tasks..arXiv preprint
arXiv:2304.14979.

Zhang, W., Shen, Y., Lu, W., and Zhuang, Y. (2023b). Data-copilet: Bridging billions of data
and humans with autonomous workflow. arXiv preprintarXiv:2306.07209.

Zhou, X., Zhao, X., and Li, G. (2024). LIm-enhanced data management. arXiv preprint
arXiv:2402.02643.

Notes

! https://aideadlin.es

Figure 1: New paradigm of data analysis brought by generative Al.

Data Analysis By LLM-based Data Agent

Use the Titanic dataset. Explore how features relate to survival. Create visualizations like: [
Survival rate by Sex (stacked bar chart). Age distribution for survivors ve non-survivors,

Boxplot of Fare by survival outeome.

Titsnkeosv

LAMBODA

| Toemlore how the features ralate to survival in tha Titanic dataset, we can create several isualzations o These plots will help visualize differences in survival rates across sex, age

| that give insights info tha data, Hera's Row you coukd aprroach craating thass plots in Python with graups, and fare prices to better understand which features might be
| lioraries fke matplotiin and seatarn. predictive
E | | W Exgcute code
import seaboxn as sns e | i
{] impart satplotlib.pyplot as ple - {'jcilc—k 6 view axecution resutts

|47 it tigire(¥igsizes(15, 5

oLt subplatil, 3.1

| 4 survival sex = pd. crosstabidatal sex’], dataf susidved’] noswalizes”induy
surdival sex.platik: 41 tacked=True, edlor=]"salson’, ‘lightgrees ax=pit
plt.titlel’ s e
glt.xlahe

{ 5

E plt. legend(i iid irvink !, Sutvived 1, lac="upner Tight B rate than males. The age distribution plot reveals that younger pas:
13 || were more likely to survive, while the fare boxplot suggests that sul
E| i Bk i abliLLr - © | generaily paid higher fares compared to non-survivors

i plt. subplotil; 3.2 i

| | sns.histplotidetasdata. x='age’ . hues'sizvived’, bins=30. kdesFalse. elemwet=’sten

Mext, you can;

Standardize the numeric features like Age and Fare to pre;

plt.ylabe
| 40 - plt. legand: ["0ud mot surviva'. - Sav visd Perforrn feature angineering, such as creating age bir
| sibap and parch. :

plt.subplotil; 3
sns howplat!x
plt titlel'F
plt xlabel

datascata, palettes{ rad’, ‘gresn’ i Encode categarical varlables and biegi dela to predict

survival

Figure 2: Timeline of selected related works from 2023.

Publicly Available Commercial Product Unknow M‘m&d Data Analysis @ TaskWeaver &

2023 ——— 4

S Data Formulator 2
\ N

AutoML-Agent | asT ——— N | ——SELA @

AutoKngg]eI’l' m [

ChatGLM-Data Analysis
@ HUAWEI

Figure 3: An architecture of an LLM-based data agent. The diagram illustrates the interaction
between LLMs and a sandbox environment. On the left, key components of LLMs are
highlighted, including User Interface, Planning, Reasoning, Reflection, and Error Handling.
The sandbox, positioned centrally, serves as a controlled environment for executing task
codes and generating results. On the right, various tools and software that can be pre-installed

in the sandbox, such as Python, SQL, Jupyter, and R, indicate the diverse ecosystems where
LLM-powered agents can operate.

T A f’@

Sandbox
Ju pyte r m
v il

rrrrr

User Interface
Planning

Reasoning

Reflection

w

Error Handling

Figure 4: Commonly used planning and reasoning strategies in LLM-based data agents.for
organizing tasks or solving problems. Each node represents a sub-task in the roadmap.

TR - R
Swcoess = = Backinacking g i | _— o,
»
B L ks &/&
! / “ﬁw W
T $ Jy ‘L l, ! I/ \q b i’,‘
ik aic T (B) Chain-of-Thought (C) Multiple CoTs I (D) Tree of m&ﬁ?ﬁbﬂ ‘@i? 3 {E) Graph of Thoughts

Figure 5: Partial dialogue from the ChatGPT-Advanced Data Analysis in Case Study 1. Items
1-4 list the work done by ChatGPT in each step:

i3]

Let's begin with loading and examining the dataset, then
proceed with the data preparation and visualization steps
as you've outlined.

I Load the data and inspect fior any missing values.
2 Separate the data by wine type {red and white) if
this information is available.
31 Visualize the distribution of wine quality scoses.
4 Plota box plot to show the relationship between
aleohol content and quality.
I'll start by loading the data and checking its structure.

import pandas as pd

Load the uploaded dataset
file_path = Ymatidata’wine_quality.csv”
wine_data = pd.read_csv(file_path)

Display basic information about the dataset, inclading
checking for missing values

wine_data_info = wine_data info{})

wine_data_head = wine_data head()

missing_values = wine_data isnuli)sum()

wine_data_info, wine_data_head, missing_values

Resule:

<class ‘pandas core frame DataFrame'=
Rangelndex: 6497 ewries, O o 6496 Data columns
(total 13 columns): & Column Non-Null Count
Dypee -~ v e — 0 fixed_scidity
6497 non-null Aoartd 1 volatile_acidity 6497 non-
nall fAoartd 2 citric_acid 6497 non-null Aoartd 3
residual_sogar 497 non-null Aloaitd 4 chlorides
6497 non-null Aoartd 5 free_sulfur_dioxide 6497
non-nufl Acantd 6 wotal_sulfur_dioxide 6497 noa-
null floattd 7 density ...

(Mone, fixed_acidity volatile_acidity citric_acid
residual_sugar ehlorides V0 74 070000 1.9
0076 1 TEOREDD0 260098 278 076004 23
00023 112028056 1.90.075 4 74 0.700.00
190076 ...

The dataset has 6497 entries and 13 columns, with
o missing values. Tt includes a color column,
which identifies wine type (red or white).

(Zh (3
Here's the plan for the next sieps:

1 Separate the data by wine type to explore red and

Next, I'll create a box plot to compare the
albeohol content across different quality

white wines independeatly. SEORES.
Create a box plot for alcobol content across wine
Mstagram. qlﬁim'm'?ﬁ' =(12, 6))
3 Create a box plot of alcohol content across different pit-nigure(figsize=(12, &)
quality : plat of o " : " sna bowplot dats=wine _data, x='quality’, y="alcohol’,
. Tue="color'y

y . . plititle" Abcohol Content vs, Wine Quality for Red and
'l proceed with these visualizations now. White Wines')

plslabelWine Quality’)

T

1

i

1

1

i

2 Visualize the wine quality distribution with a !
i

1

|

1

i

l

import matplotlib.pyplot as plt i
|

i

|

import seabom as sns plylabeli" Aleohol Content (%4)')
pltlegend{title="Wine Type')
Set the style for the plots pltshow()

sns.ser(style="whitegrid"}

M et ot . S DB e Pt Wy Wiy

1
113

Separate data by wine type ..
red_wine = wine_data[wine_data['color'] = "red']
white_wine = wine_data{wine_data["color'] = "white"]

Plot the distribution of wine quality for both types
plifigure{ figsize={ 12, 6)) -
sns. histplod(red_wine['quality'], bins=10, color=Tred’,
label="Red Wine', kde=True| !
sns. histplod[white_wine['quality’], bins=10, color="hlue', °
label="White Wine', kde=Truc)

plititle{"Distribution of Wine Cruality for Red and White

:.:
far w
o —
B

et By

Wines") The box plot illustraics how alcohol con|
plexlabel{ Wine Cuality) acToss different qm.lily scores for red a
piLylabel(Frequency’) W!Im.fﬁcbﬂal_ly. higher g
pltlegend() with slightly higher alcobol co
plLshaow(y white wines. This offers insi;
between aleohol levels
Do o W rag Py e B e Wt o
- = Would you like to

analyses based on

[}

.
e Dasary

This histogram shows the distribution of wine quality
scones for both red and white wines, with a slight skew
toward the middle scoses in both categorices.

Figure 6: Conversational machine learning an

a partial dialogue.

eneration by LAMBDA. Excerpt from

N

Execution Result

Question Code Response

{Q)-'i‘;lil is the wine quality dataset. I mtmdn: regression m,'m y:nl
recommend seme maodels for me?

{A) Certainly! For a regression task on the wine quality dataset, you can consider the
following models:
1. **Lincar Regression®*: A simple and interpretable model that assumes a linear
relationship between the features and the target variable.
2. **Random Forest Regressor**: An ensemble method that builds multiple decision
trees and averages their predictions, which often provides good performance.
You can start with Linear Regression for simplicity and imerpretability, and thenr move
on to mare complex modeds like Random Forest or Gradient Boosting for podentially
better performance.
Would vou like to proceed with training one of these models?

{(}) Based on the processed daia in the last step, perform a 5-fold Cross-validation on
Linear Regression, the evaluation metric is MSE. Print the score and average
SEOPe.

(A) from skleam model_selection import cross_val_score

Initialize the Linear Regression model

model = LincarRegression]

Perform 3-fold cross-validation and ealculate MSE
mse_scores =-cross_val_score{model, X_processed, y, ov=35,
scoring=meg_mean_squared _error’)

Print the individual MSE scores and the avernge MSE score
primi"Individual MSE scores:", mse_scores)

051144414]

Average MSE score: (.563347382 1839552

| Individual MSE scores | Average MSE seore |
I 'l -

I -1 h
| 0S0691704 | D5633473821839552)
| 064197325 | |

The 3-fold cross-validetion resulis for the Linear Regression model show an average
Moean Squared Emor (MSE) of approximately 0563, -+

iy First, for column color, perform ene-hot encoding. For all other columns
including the target column, perform standardization.

impart pandas as pd

from skleam preprocessing import StandardScaler, OneHotEncoder

Load the dataset

daa = pd read_csviUsers oor LAMBDA cache/xuxxnxx 'wine_quality csv')
Perform one-hot enceding on the 'color’ column

data = pd get_dummies{data, columns=['cobar'], drop_firs=False)

A)

scaler = StandardScalen()
X scaled = scaler fit_irans form{ X drop{colomns=["color_red', "color_whiteTj)

X_processed head()

Index(['fixed_acidity’, "velatile_aeidity’, "citric_acid',
‘residual_sugar''chlorides’ diype="objeet’) ...

| fixed acidity | volatile_scidity | citric_acid | residual_sagar | chlorides |
free_sulfur_diexide | total_sulfur_diexide | ... -0.744778 | 0569938 |
-1 10014 | SL44636 | 103499 1

The data has been suceessfully preprocessed with one-hot encoding for the "color’
colunin and standardization for the numerical features. .

Train and select some parameters for XGBoost. Print the best parameters
and MSE based on eross-validation.

impaort xghoost &s xgh

from skleam mode]_selection import GridSearchC'V
Define the parameter grid for XGBoost
param_grid = {'n_estimators' [100, 200, 300],...... }
grid_search = GridSearchCViestimator=rmode], pmm_gn’ﬁxﬂa
ov=3, scoring=......]

| Best parameters found | Best MSE score |

N

6346782151

e Lt |

| {'learning_rate’; 001, 'max_depth": 3, 'n_esti
|

The XGBoost model with the best
average Mean Squared Error (MSE) of

Report
Regression Task Lising Wine Chaality
Diatazed with Machine Learning Models

Figure 7: Partial dialogue from residual
bootstrap confidence interval estimati

N

stics and heteroskedasticity testing, and

Case Study 2

Lincar Regression with Residual Diagnostics and Heteroskedasticity Testing
Objective: Assess the performance of LLM-based data agents in conducting a
full regression analysis, including residual diagnostics and heteroskedasticity
testing.

Dlixit: Auto MPG dataset (mpg csv), predicting fuel efficiency (mpg) based on
vehicle attributes (horsepower, weight, ete).

and weight. After fitting, show the residual plot and perform a test for
heteroskedasticity.

(A

import pandas aspd

Load dataset

data_path = "cache/conv_cacheooasto-mpg, csv'

;Il:;ﬁ['lmrs:ptm':r'] = pd to_numericldata*horsepower'], errors="coerce’)
Drop rows with missing values in relevant columns
data = data dropne(subset={'mpg’, 'horsepower’, 'weight'T}

Fit linear regression model

model = sm OLS(y, X).fit()

Predict values and calculate residuals

predictions = model predict(X)

residuals = v - predictions

Perform Breusch-Pagan test for heteroskedasticity
bp_test = het_breuschpaganiresiduals, X)

Prepare test results to display

bp_test_results = {"Lagrange multiplier statistic™ bp_testf0], “p-value” bp_test[1],
"Fvalue’: bp_test[2], 'f p-value': bp_test[3]}
bp_test_results

u'_‘lick to view execution results
<Figure size 640x480 with | Axes>
{'Lagrange multiplier statistic”: 25 23450977192124,
‘pevalue': 3. 31433059792841 Be-06,
'fvalue': 13382153068 TR299G,

{Q): 1 want to fit a linear regression model predicting mpyg asing horsepower

'f p-value’s 239561 18095494605e-06 -
o
The residual plot allows you to visually |
inspect the fit of the linear regression model, |~
whiles the very low p-values from the +
Breusch-Pagan test indicate significant -

heteroskedasticity . H

|

| Case Study 3

| Bootstrap Confidence Intervals and Uncertainty Quantification

| Objective: Examine whether data agents can handle non-parametric

I inference and generate confidence intervals via bootstrap resampling.

I Dataset: Wine Quality.

i (Q): Using the Wine Quality dataset, the mean aleohol for
| red wine and constroct a 95% confidence interval using bootstrap with 1000
| resamples.

A

. mport pandas as pd ..

data_path = anhc.'c:nm» carhea‘ZfIQS (6-03-302080 1 280320/ wine_quality.csy’
: data = pd read_csv(data_path)

1 # ml:.tmp function to compute the mean of resamples

1 def bootstrap_mean(data, n_resamples=1000):

n = lenidata)

means = np.empty(n_resamples)

for 1 in range(n_resamples):
sumple = np.random choice(data, size=n, replace=Trug)
means[i] = np mean(sample)

return means

i

1

I

1

1

I

1

i # Perform hootstrap

I bootstrap_means = bootstrap_mean(red_wine['aleohol] values, 1000)

I # Calculate 95% confidence mterval

i ci_lower = np percentile(bootstrap_means, 2.5) 'S

i «i_upper = np_percentile(bootstrap_means, 97.5)

i mean_estimate = npmean(red_wine|"aleohol '

I # Plot the hootstrap distribution and confidence intervals
plt figure{ figsize={ 10,6))

l plthist(bootstrap_means, bins=30, alpha=0.7, c:nl.u

| ple.axvime{ci_lower, color="", linestyle=

! pltaxvime{ci_upper, color=", linestyle="--4

I plt.axvline{mean_estimate, color="g", lines

color="k")
- joi_lower-3£}")
pper: el upp-:r I

Figure 8: Creating and using the customiz

partial dialogue.

ool in'the Data Interpreter. Excerpt from a

from metagpt tools tood_registry import register_tool

from metagpt ools web_browser_engine_playvwright import
PlaywrightWrapper

i@register_tool{tags=["weh scraping”, "web"[)

asyne def serape_web_playwrighi{url):

Amynchronowsly Scrape and save the HTML structre and
inner text content of a web page using Playwright.
Args:
url (siry: The main URL to fetch inner text from,
Refums:
diet: The inmer text content and him structare of the
web page, keys are 'inner_texr’, him'.

Feich conference deadline from the website hitps: [/
aideadlin es/ Taub=NLF, save it s a i file

**MNotice: Firstly parse the web page encoding and the text
HTML stracture;

then save it in the o file **

[
{
“iask_id™
“dependent_task_ids": [],
“instruction™: "Fetch the conference deadlines from the

ML section of the website ",
Trask type™: "web scraping”
b
4
“task_id™ "2",
“dependent_task_ids": ["1"],
“instruction”: "Parse the fetched data to extract the relevant
deadlines.”,
“iask_type™ "other™
h
!
“task_id™ 3",
“dependent_task_ids": ["2"],
“instruction”: "Save the extracted deadlines into a txt file.”,

-1 02453984 | INFO

metagpt toals tool_recommend-recall_tools: 195 -
Recalled tools:

[serape_web_playwright']; Scores:

T TRIRITOM4TI2445]

["serape_web_playwright']

2024-11-15 02:48:40.976 | INFO |

metagpt tools tool_recommend:recommend _tools: 101
- Recommended tools:

[scrape_web_playwright']

Impon the necessary tool for web scraping
from metagpt.toals. libsweb_scraping import
scrape_web_playwright

Deefine the URL for the NLP section of the
conference deadlines

url = "hitps:/aidesdlines Taub=NLP"

Agynchronously scrape the web page 1o get the
inner text and HTML structure

data = await serape_web_playwright{url)

Extracted conference deadlines have been saved to
‘conferance_deadlines txt'.

impart re

Assuming ‘data’ contains the fetched HTML data from
the previeus task

Extracting deadlines using regex or BeawtifulSoup
from bsd import BeautifulSoup

Parse the HTML content
soup = Beautiful Soupdata[heml'], Tml parser)

Fird all deadlines (assoming they are in a specific tag,
&g, or <div=)

i
| deadlines =[]
i
I

Figure 9: Integrating knowledge

of FPNNNs in LA

N

for item in soup find _all{'li": # Adjust the tag based on
seiual HTML strocture

ext = itemn get_texi()

if e searchird {4)-\d§2}-\d{2}", text): & Looking for
date patterns

deadlines append(text.strip(1)

print("Extracted conference deadlines have been saved to
‘confercnce_deadlines txt'.")

conference_deadlines

Most recent first

NAACL 2023

Deadline: Wed Oct 16 2024 19:59:59 GMT+0R00
April 29 - May 4, 2024, Albuquerque, New Mexico,
USA.

Mote: All submissions most be done through ARR. More
infio here.

natural language proc

ICLE 2025

Deadline: Wed Oct 02 2024 19:59:59 GMT+0800
Apr 24-28 H2S. Singapore.

Mote: Mandatory absiract deadline on September 27,
2024, More info here.

machine learning automated planning robatics c
wision natural language proc speech/si gproc
COLING 2025

Deadline: Toe Sep 17 2024 19:39:59 GMT+
Jamuary 19-24, H25_ Aba Dihabi, UAE.

Mote; Moge info can be found here™

ratural language proc

Theramia 2024

Deadline: Mon Jun 10 2024 19: 350 G
Movember 13-15, 2024, Montevi >

Knowledge Configuation Question and Result

{Q): I want to train a fixed points non-negative newral network. We define as neural
networks that map nonnegative vectors to nonnegative vectors. Use nn_sigmoid as
the networks, set learning rate to Se-3, run 5 epochs, set wd te 0 and b to 64. Print
train and evaluation loss for each epoch. Use the MNIST dataset for training and

name: 'Fixed_points_of nonnegative_neural networks"
description: "This is
fixed_points_of nonnegative_neural _networks which used
fixed point theory to analyze nonnegative neural networks,

; . testing.
which we define as neural networks that map nonnegative g
vectors to nonnegative vectors. Yariables: networks: (A)
nn_sigmoid, learning rate: Se-3, epochs: 30, wd: 0, b: 64 ° o4 Retrieval:

mode = "core’

core_function: ‘core’
runnable_function = ‘runnable’
test_case = 'case_nn_networks'

args = argparse. ArgumentParsen()
args.net = nn_sigmaoid'

args.Ir = Se-3

args.epochs = 30

args.wd =0

args.h = 64
train_nn_network{args)

import numpy as np

def initialize_weights(tensor):
return tensor.uniform_() * math sqre(0.25 /

(tensorshape[0] + tensor.shape[1]))

class _RRAutoencoder{nn.Module):

def __init_ {self):
super().__imit_ ()
selflinear 1 = nn.Linear(784, 200)
self linear_2 = nn. Linear{200, 784)
self.encoder = self linear_1
self.decoder = self linear_2

def forward(self, x):
x = self encoder(x)

v = self decoder(x)

retum x

The retriever found the following pieces of code cloud address the problem. All functions
and classes have been defined and executed in the back-end.

Core code (All functions and classes have been defined, directly use them in your code):
" eore_function

args = argparse ArgumentParser()

args.net = 'nn_sigmoid’

args.Ir = 5e-3

args.epochs = 30

args.wd =0

args.h = 64

train_nn_network(args)

Your code:
" python
import argparse

Set up the arguments

args = argparse ArgumentParser()
args.net = 'nn_sigmoid’

args.Ir = 5e-3

args.epochs = 3

argswd =10

args.h = 64

Train the neural network
train_nn_network(args)

B Execute code...

Execution result:
Downloading http://yann.lecun com/exdb/mnistiain-images-idx3-ubyte gz

Extracting /MNIS T/raw/t1 Ok4labels-idx 1 -ubyte gz to /MNIST/raw
Epoch: 1| Train Loss: 02316 | Test Lass: 0.2311

The training and test losses show a decreasing trend, indicating that the model is learning
and perfarming well omjthe MNIST dataset. ...

Table 1: Characteristics of selected data agents. Methods can be categorized into
Conversational and End-to-End approaches. Conversational methods support interactive
dialogue withriterative user feedback, whereas End-to-End approaches rely on a single
prompt, with the agent autonomously planning and solving the problem. The user interface
can be categorized into IDE-based, Systems, CLI, and OS-based. The term “Human-in-the-
Loop” indicates that humans can intervene in the data agent’s workflow, such as modifying
code in situations where automatic processes are inadequate. “Self-Correcting” refers to the
agent’s ability to automatically identify and correct errors within the workflow through
reflection. Finally, “Expandable” denotes the data agent’s capacity to incorporate customized
tools or knowledge. “-” indicates that the attribute is either not mentioned in the paper or
could not be observed from the provided resources.

U H i Self-
Data Agents Methods SeT Planning uman in € i Expandable
Interface the Loop icorrecting
ChatGPT-ADA (OpenAl, . .
(Op Conversational:System Linear X X X
2023)
Data Copilot (Zhang et
al, 2023pkl)) (8 End-to-end System Linear X X X
Jupyter Al (jupyterlab, . .
Py (jupy ConversationalIDE-based iBasic IO X X X
2023)
MLCopilot (Zhang et al., . .
pilot (& ConversationaliiDE-based Basic IO X X X
2023a)
Chapyter (chapyter, . .
pyter (chapy ConversationaliIDE-based iBasic IO X X X
2023)
Openagents (Xie et al., . .
penag (i Conversational:System Linear X X X
2023)
JarviX (Chen et al., 2024)iEnd-to-end - - - - -
DS-Agent (G tal.,
2024?en (Guoeta End-to-end CLI Linear X X -
Spider2-V (Cao et al.,
28;4) (End-to-end 0S-Based - X X -
ChatGLM-DA (GLM, . .
@ (ConversationaliSystem Linear X X X
2024)
TaskWeaver (Qiao et al., CLh& .
End-to-end Linear
2023) Systdm X X X
Data Int ter (H
e:;}g;;z)re er (Hong End-to-end CLI Hierarchical; X X X
LAMBDA (S tal., . .
(Suneta ConversationaliSystem Basic 10 X X X
2024)
Data F lator.2
ata FomURMG ConversationaliSystem Basic IO X X -
(Wang et al., 2024a)
AutoM3L (Luo et al.,
End-to-end - - -
2024) nd-to-en X X
SELA (Chi et al,, 2024) End-to-end CLI Hierarchical: X X -
AIDE (Jiang et al., 2024) :End-to-end CLI Hierarchical: X X -
End-to-end CLI Linear X X X

AutoKagle (Li et al.,

2024)

AutoML-Agent (Trirat et

al., 2024) End-to-end - Linear
Agent K v1.0 (Grosnit et .

End-to- - L
al., 2024) nd-to-end inear
GPT-40 (OpenAl, 2024) End-to-end System -
AutoGen Studio (Wu et

End-to-end System Linear
al., 2023) Y !
Colab Data Science

! End-to-end IDE-based iLinear

Agent (Google, 2025)

	A Survey on Large Language Model-based Agents for Statistics and Data Science
	Notes

