
The American Statistician

ISSN: 0003-1305 (Print) 1537-2731 (Online) Journal homepage: www.tandfonline.com/journals/utas20

A Survey on Large Language Model-based Agents
for Statistics and Data Science

Sun Maojun, Ruijian Han, Binyan Jiang, Houduo Qi, Defeng Sun, Yancheng
Yuan & Jian Huang

To cite this article: Sun Maojun, Ruijian Han, Binyan Jiang, Houduo Qi, Defeng Sun, Yancheng
Yuan & Jian Huang (15 Sep 2025): A Survey on Large Language Model-based Agents for
Statistics and Data Science, The American Statistician, DOI: 10.1080/00031305.2025.2561140

To link to this article:  https://doi.org/10.1080/00031305.2025.2561140

© 2025 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material 

Accepted author version posted online: 15
Sep 2025.

Submit your article to this journal 

Article views: 197

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=utas20

https://www.tandfonline.com/journals/utas20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00031305.2025.2561140
https://doi.org/10.1080/00031305.2025.2561140
https://www.tandfonline.com/doi/suppl/10.1080/00031305.2025.2561140
https://www.tandfonline.com/doi/suppl/10.1080/00031305.2025.2561140
https://www.tandfonline.com/action/authorSubmission?journalCode=utas20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=utas20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00031305.2025.2561140?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00031305.2025.2561140?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2025.2561140&domain=pdf&date_stamp=15%20Sep%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2025.2561140&domain=pdf&date_stamp=15%20Sep%202025
https://www.tandfonline.com/action/journalInformation?journalCode=utas20


 

A Survey on Large Language Model-based Agents for Statistics and Data Science 

Maojun aSun , Ruijian aHan , Binyan aJiang , Houduo a,bQi , Defeng bSun , Yancheng 
b*Yuan  and Jian a,bHuang   

*Corresponding authors.  

a Department of Data Science and Artificial Intelligence, The Hong Kong Polytechnic 

University  

b Department of Applied Mathematics, The Hong Kong Polytechnic University  

Abstract 

In recent years, data science agents powered by Large Language Models (LLMs), known as 

“data agents,” have shown significant potential to transform the traditional data analysis 

paradigm. This survey provides an overview of the evolution, capabilities, and applications of 

LLM-based data agents, highlighting their role in simplifying complex data tasks and 

lowering the entry barrier for users without related expertise. We explore current trends in the 

design of LLM-based frameworks, detailing essential features such as planning, reasoning, 

reflection, multi-agent collaboration, user interface, knowledge integration, and system 

design, which enable agents to address data-centric problems with minimal human 

intervention. Furthermore, we analyze several case studies to demonstrate the practical 

applications of various data agents in real-world scenarios. Finally, we identify key 

challenges and propose future research directions to advance the development of data agents 

into intelligent statistical analysis software. 

Keywords: data agents; generative AI; data analysis; natural language interaction; 

statistical software.  

1 Introduction 

As nearly every aspect of society becomes digitized, data analysis has emerged as an 

indispensable tool across various industries (Inala et al., 2024). For instance, financial 

institutions leverage data analysis to make informed decisions about stock trends (Provost 

and Fawcett, 2013; Institute, 2011), hospitals utilize it to monitor patients’ health conditions 

(Waller and Fawcett, 2016), and companies employ it to develop strategic plans (Chen et al., 

2012). Despite its widespread utility, data analysis is often perceived as a challenging field 

with a significant “entry barrier” (Cao, 2017; Jordan and Mitchell, 2015), typically requiring 

knowledge in areas such as statistics, data science, and computer science (Kitchin, 2014). 

Since the release of SPSS (IBM, 1968) in 1968, followed by SAS (Inc., 1976), Matlab 

(MathWorks, 1984), Excel (Microsoft, 1985), Python (Foundation, 1991), R (for Statistical 

Computing, 1995), PowerBI (Microsoft, 2013), and other specialized data analysis tools and 

programming languages, these advancements have significantly aided professionals in 

conducting statistical experiments and data analysis. Moreover, they have made data analysis 

more accessible to a broader range of practitioners (Witten et al., 2016). 

Acc
ep

te
d 

M
an

us
cr

ipt

http://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2025.2561140&domain=pdf


The general data analysis process typically involves several key steps. Initially, data is 

collected from studies or extracted from databases and imported into tools such as Excel. 

Next, software like Excel or programming languages such as Python and R are employed to 

clean and analyze the data, aiming to extract valuable insights. Subsequently, data 

visualization is performed to make these insights more accessible and understandable. For 

more complex tasks, such as statistical inference and predictive analysis, statistical and 

machine learning models are often necessary. This involves data processing, feature 

engineering, modeling, evaluation, and more. Upon completing the analysis, a final report is 

usually drafted to summarize the findings and insights. However, for individuals without 

expertise in statistics, data science, and programming, data analysis remains a high-barrier 

task. 

The barriers to data analysis primarily exist in the following areas: 

• Lack of systematic statistical training: Individuals without a background in statistics may 

find it challenging to understand which types of analysis are feasible, even when data is 

presented to them. As data and models become increasingly complex, gaining a solid 

understanding of current statistical techniques typically requires at least a Master’s level of 

statistical training.  

• Software limitation: Simple data analysis tools like Excel are inadequate for complex 

scenarios, such as predictive analysis or analyzing data from enterprise databases. 

Conversely, advanced programming languages for data analysis, such as Python and R, 

require prior programming knowledge, which can be a barrier for many users.  

• Challenges in domain-specific problems: In specialized fields like protein or genetic data 

analysis, general data scientists may find it difficult to perform effective analysis due to a 

lack of domain-specific knowledge.  

• Difficulty in integrating domain knowledge: Corresponding to the last point, domain experts 

often lack the data science and programming skills needed to quickly incorporate their 

expertise into data analysis tools. For example, PSAAM (Steffensen et al., 2016) is software 

designed for the curation and analysis of metabolic models, yet a biologist researching 

metabolism might find it challenging to integrate this analytical method into common data 

analysis tools like Excel or R.  

With the rise of generative AI, new opportunities have emerged in statistics and data science. 

LLM-based data agents are gradually addressing existing challenges while introducing a new 

paradigm for approaching data analysis tasks. 

An “AI agent” (or LLM agent) refers to an autonomous or semi-autonomous software system 

powered by AI models such as LLMs. These agents can interpret natural language 

instructions, plan and execute tasks, and interact with users or other systems to complete 

complex workflows (Cheng et al., 2024). 

Specifically, we define an LLM-based data agent as an autonomous or semi-autonomous 

software system powered by LLMs, capable of understanding natural language instructions, 

planning and executing data-centric tasks, and interacting with users or external tools to 

accomplish complex objectives—from exploratory data analysis to machine learning model 

Acc
ep

te
d 

M
an

us
cr

ipt



development. In this paper, the terms “LLM-based data science agent,” “LLM-based data 

agent,” and “data science agent” are collectively referred to as “data agent” for simplicity. 

This survey explores recent advancements in data agents and highlights data analysis 

performed by various agents through a series of case studies. In Section 2, we briefly discuss 

the opportunities introduced by recent developments in generative AI. Section 3 reviews and 

categorizes recent work on data science agents. We then present several case studies in 

Section 4. Section 5 examines the challenges and future directions in this field, followed by 

our discussion in Section 6. Finally, we present our conclusions in Section 7. 

2 Opportunities Brought by Generative AI 

The rise and potential of generative AI, particularly Large Language Models (LLMs) or 

vision language models (VLMs) in the field of data science and analysis have gained 

increasing recognition in recent years. In addition to understand text, LLMs are also trained 

to understand tabular data, allowing them to effectively extract insights, identify patterns, and 

draw meaningful conclusions from tables (Dong and Wang, 2024). Consequently, LLMs 

have emerged as powerful tools capable of significantly enhancing and transforming a variety 

of data-driven applications and workflows (Nejjar et al., 2023; Tu et al., 2023; Cheng et al., 

2023). Recent research has focused on designing LLM-based data science agents (data 

agents) to automatically address data science tasks through natural language, as demonstrated 

by tools like ChatGPT-Advanced Data Analysis (ChatGPT-ADA) (OpenAI, 2023), 

LAMBDA (Sun et al., 2024) and Colab Data Science Agent (Google, 2025). 

The emergence of data agents offers a potential solution to the previously mentioned 

challenges, as they lower the entry barrier for users who lack programming or statistical 

knowledge. By providing an intuitive interface that harnesses the capabilities of LLMs, users 

can request analyses using natural language, and the data agents can interpret these 

instructions, access relevant data, and autonomously apply appropriate analytical techniques. 

For example, a user might request, “Calculate the sales growth in different regions from 2021 

to 2028, generate a bar chart to visualize the results, and provide key insights.” With this 

simplified instruction, data agents can automatically extract, analyze, visualize, and report 

data, reducing the requirement for technical expertise and fostering a more efficient 

workflow. This significantly lowers the entry barriers for individuals unfamiliar with 

traditional data analysis tools and methods. 

Furthermore, by embedding specialized knowledge into LLMs, data agents can potentially 

overcome challenges faced by data scientists in fields like genomics, where domain expertise 

is crucial (Cao, 2017). Simultaneously, domain experts who may lack data science or 

programming skills can rely on data agents to seamlessly integrate their expertise into data 

analysis workflows. This ability to bridge the gap between domain expertise and data science 

has the potential to advance interdisciplinary research and decision-making in complex 

scenarios. 

3 LLM-based Data Science Agents 

3.1 Overview 

Acc
ep

te
d 

M
an

us
cr

ipt



LLM-based data agents leverage the powerful natural language understanding and generation 

capabilities of LLMs to autonomously tackle complex data analysis tasks. Figure 3 illustrates 

a commonly used framework for these agents. 

In this framework, the LLM serves as the core of the entire system, driving its performance 

and reliability. As such, the capabilities of the LLM are critical to the system’s effectiveness, 

with advanced models like GPT-4 often being used. Data analysis typically involves multiple 

steps, especially when addressing complex tasks. Techniques such as Planning, Reasoning, 

and Reflection help ensure that the LLM processes these tasks with greater logical coherence 

and makes optimal use of its knowledge. 

In the architecture, the LLM generates the code for a given data analysis task, executes it, and 

retrieves the corresponding results. This requires an execution environment, represented by 

the Sandbox, which safely isolates the code execution process. The Sandbox allows users to 

run programs and access files without risking the underlying system or platform. It includes 

pre-installed programming environments and software, such as Python, R, Jupyter, and SQL 

Server. 

A user-friendly interface is also essential to improving usability. An intuitive interface not 

only attracts users but also enables them to quickly engage with and utilize the system 

effectively. 

3.2 Evolution of Data Science Agent 

Research on data agents began gaining momentum in 2023. Chandel et al. (2022) trained and 

evaluated a model within a Jupyter Notebook to predict code based on given commands and 

results. Soon after, it was discovered that LLMs, such as GPT, could generate accurate code 

for basic data analysis. With the rise of the LLM-based agent, researchers began designing 

special data agents for automating data science and analysis tasks by human language. Figure 

2 shows some selected works from 2023, while Table 1 illustrates some key characteristics. 

3.3 User Interface 

The user interface is crucial for attracting users at first glance. Current research on user 

interface design can be broadly categorized into four types: Integrated Development 

Environment-based (IDE-based), Independent System, Command line-based (Command-

based), and Operation System-based (OS-based). 

IDE-based  Integrated Development Environments (IDEs) such as Jupyter provide 

convenient tools for data science and analysis. Recent efforts, including Colab Data Science 

Agent (Google, 2025), Jupyter-AI (jupyterlab, 2023), Chapyter (chapyter, 2023), and 

MLCopilot (Zhang et al., 2023a), have incorporated LLMs into Jupyter environments. For 

example, Colab Data Science Agent enables planning, automatic code cell generation, 

execution, and result presentation in the notebook. This approach is particularly popular 

because it allows users to review, edit, and run code directly. 

Independent System  Some works have focused on developing independent systems 

equipped with user interfaces. For example, ChatGPT introduced a streamlined, intuitive 

conversational system—a model of interaction that has been widely adopted in subsequent 

Acc
ep

te
d 

M
an

us
cr

ipt



projects. In the context of data analysis tasks, beyond basic text-based input and output, 

several systems have introduced specialized features, such as visualization, report generation, 

and file download options, to simplify user interactions. For instance, LAMBDA (Sun et al., 

2024) facilitates easy data review by enabling intuitive data display after users upload their 

data. Data Formulator 2 (Wang et al., 2024a) further enhances the iterative process of 

creating data visualizations through a multi-modal interface, combining graphical user 

interface (GUI) elements with natural language inputs, allowing users to specify their 

visualization intentions with both precision and flexibility. WaitGPT (Xie et al., 2024) 

addresses the challenge of understanding and verifying LLM-generated code by transforming 

raw code into an interactive, step-by-step visual representation. This allows users to 

comprehend, validate, and adjust specific data operations, actively guiding and refining the 

analysis process. 

Command Line-based Works like Data Interpreter (Hong et al., 2024) and TaskWeaver 

(Qiao et al., 2023) using command-line interfaces (CLI) in their works. For researchers and 

experienced users, it provides greater flexibility and control over the system, allowing users 

to execute a wide range of functions in the command line and customize their actions. 

Besides, command-based interfaces often require less computational overhead compared to 

graphical user interfaces, making them more efficient. 

OS-based  OS-based agents, such as UFO (Zhang et al., 2024), are designed to operate 

directly within an operating system environment, allowing them to control a wide range of 

system tasks and resources. Similarly, Spider2-V (Cao et al., 2024) simulates the typical 

workflow of a data scientist by mimicking actions such as clicking, typing, and writing code, 

providing an OS-level interactive experience that closely resembles how humans manage 

data science tasks. However, while OS-based agents like Spider2-V lay a solid foundation for 

user interaction, achieving full automation of the data science workflow remains an ongoing 

challenge (Cao et al., 2024). 

3.4 Planning, Reasoning, and Reflection 

Planning, Reasoning, and Reflection often play crucial roles in guiding the actions of data 

agents. In particular, planning and reasoning emphasize the generation of a logically 

structured sequence or roadmap of actions and thought processes to systematically address 

problems step by step (Huang et al., 2024b; Hong et al., 2024). Complex tasks often require a 

step-by-step approach to ensure effective resolution, while simpler tasks can be handled 

without such detailed breakdowns. Recently, GPT-4o (OpenAI, 2024) introduces a planning 

architecture that integrates external tools and decomposes complex tasks into structured sub-

tasks, enabling more accurate and controllable multi-step reasoning. 

Some approaches focus on building conversational data agents (Zhang et al., 2023b, a; Sun et 

al., 2024), where users interact with the agent over multiple rounds to complete a task. In 

these cases, under human supervision, complex planning is not necessary, as guidance can 

simplify decision-making and adjust the workflow dynamically. Some of these works operate 

in a Basic I/O mode. On the other hand, End-to-end data agents (Guo et al., 2024; Qiao et al., 

2023; Hong et al., 2024; Chi et al., 2024; Jiang et al., 2024; Li et al., 2024; Trirat et al., 2024; 

Grosnit et al., 2024) are designed to allow users to issue a single prompt that encompasses all 

requirements. In these cases, the agent employs planning, reasoning, and reflection to 

iteratively complete all tasks autonomously. 

Acc
ep

te
d 

M
an

us
cr

ipt



Recent research in planning has introduced two main approaches: Linear Structure Planning 

(or Single Path Planning/Reasoning) and Hierarchical Structure Planning (or Multiple Path 

Planning/Reasoning). Figure 4 illustrates some recent planning methodologies like Chain-of-

Thought (CoT) (Wei et al., 2022), ReAct (Yao et al., 2022), Tree-of-Thoughts (ToT) (Yao et 

al., 2024), and Graph-of-Thoughts (GoT) (Besta et al., 2024). 

Linear Structure Planning In linear structure planning, a task is decomposed into a 

sequential, step-by-step process. For example, DS-Agent (Guo et al., 2024) utilizes Case-

Based Reasoning to retrieve and adapt relevant insights from a knowledge base of past 

successful Kaggle solutions. This approach allows the agent to learn from previous 

experiences and continuously improve its performance. Similarly, AutoML-Agent (Trirat et 

al., 2024) adopts a retrieval-augmented planning (RAP) strategy to generate diverse plans for 

AutoML tasks. By leveraging the knowledge embedded in LLMs, information retrieved from 

external APIs, and user requirements, RAP allows the agent to explore a wider range of 

potential solutions, leading to more optimal plans. 

Hierarchical Structure Planning Simple linear planning is often insufficient for complex 

tasks. Such tasks may require hierarchical and dynamic, adaptable plans that can account for 

unexpected issues or errors in execution (Hong et al., 2024). For instance, Hong et al. (2024) 

utilizes a hierarchical graph modeling approach that breaks down intricate data science 

problems into manageable sub-problems, represented as nodes in a graph, with their 

dependencies as edges. This structured representation enables dynamic task management and 

allows for real-time adjustments to evolving data and requirements. Additionally, they further 

introduce “Programmable Node Generation,” to automate the generation, refinement, and 

verification of nodes within the graph, ensuring accurate and robust code generation. AIDE 

(Jiang et al., 2024) employs Solution Space Tree Search to iteratively improve solutions 

through generation, evaluation, and selection components. Similarly, SELA (Chi et al., 2024) 

combines LLMs with Monte Carlo Tree Search (MCTS) to enhance AutoML performance. It 

starts by using LLMs to generate insights for various machine learning stages, creating a 

search space for solutions. MCTS then explores this space by iteratively selecting, 

simulating, and back-propagating feedback, enabling the discovery of optimal pipelines. 

Agent K v1.0 (Grosnit et al., 2024) employs a structured reasoning framework with memory 

modules, operating through multiple phases. The first phase, automation, handles data 

preparation and task setup, generating actions through structured reasoning. The second 

phase, optimization, involves solving tasks and enhancing performance using techniques such 

as Late-Fusion Model Generation and Bayesian optimization. The final phase, generalization, 

utilizes a memory-driven system for adaptive task selection. 

Reflection Reflection enables an agent to evaluate past actions and decisions, adjust 

strategies, and improve future task performance. This process is essential for self-correction 

and debugging during task execution. For example, Wang et al. (2024b) employs trajectory 

filtering to train agents that can learn from interactions and enhance their self-debugging 

capabilities. This technique involves selecting trajectories in which the model initially makes 

errors but successfully corrects them through self-reflection in subsequent interactions. 

Similarly, Data-copilot (Zhang et al., 2023b) and LAMBDA (Sun et al., 2024) use self-

reflection based on code execution feedback to address errors. If a compilation error occurs, 

the agents repeatedly attempt to revise the code until it runs successfully or a maximum retry 

limit is reached. This iterative process helps ensure code correctness and usability. 

3.5 Multi-agent Collaboration 

Acc
ep

te
d 

M
an

us
cr

ipt



Multi-agent System (MAS) enable task decomposition through role assignment. In this setup, 

agents communicate, negotiate, and share information to optimize their collective 

performance (Xi et al., 2023). It offers several advantages over single-agent setups. First, they 

reduce redundant and complex context accumulation by isolating responsibilities across 

agents. Second, each agent instance can be powered by a different language model, opening 

opportunities to specialize models for domain-specific expertise. For example, in LAMBDA 

(Sun et al., 2024), a dedicated Programmer Agent is responsible for code generation, while 

noisy error outputs are handled separately by an Inspector Agent. This separation helps the 

Programmer Agent avoid context overload, simplifies historical trace management, and 

ultimately improves response accuracy. 

AutoGen introduces a programming framework specifically designed for constructing MAS 

(Wu et al., 2023). Furthermore, AutoML-Agent (Trirat et al., 2024) involves the Agent 

Manager, Prompt Agent, Operation Agent, Data Agent, and Model Agent—that together 

cover the entire pipeline, from data retrieval to model deployment. OpenAgents (Xie et al., 

2023) consisted of agents such as the Data Agent, Plugins Agent, and Web Agent. Similarly, 

AutoKaggle (Li et al., 2024) employs agents like Reader, Planner, Developer, Reviewer, and 

Summarizer to manage each phase of the process, ensuring comprehensive analysis, effective 

planning, coding, quality assurance, and detailed reporting. These collaborating mode help 

decentralized the complicated task, allowing each agent to focus on its specific role, thereby 

enhancing the overall efficiency and effectiveness of the data analysis process. 

3.6 Knowledge Integration 

Integrating domain-specific knowledge into data agents presents a challenge (Dash et al., 

2022; Sun et al., 2024). For example, when a domain expert has specialized knowledge, such 

as specific protein analysis code, the agent system are expected able to incorporate and apply 

this knowledge effectively. One approach is tool-based, where the expert’s analysis code is 

treated as a tool that is recognizable by the LLM (Xie et al., 2023). When the agent 

encounters a relevant problem, it can call upon the appropriate tool from its library to execute 

the specialized analysis. Another method involves the Retrieval-Augmented Generation 

(RAG) technique (Lewis et al., 2020), where relevant code is first retrieved and then 

embedded within the context to facilitate in-context learning. LLM-based agents can also 

access and interact with external knowledge sources, such as databases or knowledge graphs, 

to augment their reasoning capabilities (Wang et al., 2024b). 

Sun et al. (2024) proposes a Knowledge Integration method that builds on this concept. In 

LAMBDA, analysis codes are parsed into two parts: descriptions and executable code. These 

are then stored in a knowledge base. When the agent receives a task, it retrieves the relevant 

knowledge based on the similarity between the task description and the descriptions stored in 

the knowledge base. The corresponding code is then used for in-context learning (ICL) or 

back-end execution, depending on the configuration. This approach enables agents to 

effectively leverage domain-specific knowledge in relevant scenarios. 

3.7 Benchmarks for Evaluating Data Agents 

Evaluating the performance of data agents is crucial for understanding their effectiveness and 

reliability. Current benchmarks primarily rely on deterministic output comparisons, where an 

LLM processes a task, generates code, and is evaluated based on the final execution results. 

Acc
ep

te
d 

M
an

us
cr

ipt



For example, DS-1000 (Lai et al., 2022) provides a large-scale benchmark of 1000 realistic 

problems spanning seven core Python data science libraries, with execution-based multi-

criteria evaluation and mechanisms to reduce memorization bias. MLAgentBench (Huang et 

al., 2024a) introduces a benchmark focused on machine learning research workflows by 

constructing an LLM-agent pipeline. Furthermore, InfiAgent-DABench (Hu et al., 2024) 

presents a end-to-end benchmark for evaluating the capabilities of data agents, the tasks 

require agents to end-to-end solving complex tasks by interacting with an execution 

environment. However, for tasks such as data visualization, the outputs are often difficult to 

compare directly. Designing effective evaluation strategies for data visualizations remains an 

open and important question. 

3.8 System Design and Other Related Works 

Recent advancements in interactive data science systems highlight a variety of approaches in 

system design, with LLMs and structured frameworks significantly enhancing the user 

experience across key areas such as data visualization, task specification, predictive 

modeling, and data exploration. Notable systems like VIDS (Hassan et al., 2023), Data-

Copilot (Zhang et al., 2023b), InsightPilot (Ma et al., 2023), and JarviX (Liu et al., 2023) 

exemplify diverse design principles tailored to these specific functions. For instance, Data-

Copilot adopts a code-centric approach, generating intermediate code to process data and 

subsequently transforming it into visual outputs, such as charts, tables, and summaries 

(Zhang et al., 2023b). 

Other frameworks emphasize workflow automation. InsightPilot integrates an “insight 

engine” that guides data exploration, reducing LLM hallucinations and enhancing the 

accuracy of exploratory tasks (Ma et al., 2023). JarviX, in combination with MLCopilot 

(Zhang et al., 2023a), contributes to automated machine learning by merging LLM-driven 

insights with AutoML pipelines. Additionally, in the domain of database management, 

systems like LLMDB (Zhou et al., 2024) improve efficiency and reduce hallucinations and 

computational costs during tasks such as query rewriting, database diagnosis, and data 

analytics. In terms of data visualization, MatPlotAgent (Yang et al., 2024) transforms raw 

data into clear, informative visualizations by leveraging both code-based and multi-modal 

LLMs. 

Moreover, Data Formulator 2 (Wang et al., 2024a) organizes user interactions into ”data 

threads” to provide context and facilitate the exploration and revision of prior steps. A similar 

approach is seen in WaitGPT (Xie et al., 2024), which transforms raw code into an interactive 

visual representation. This provides a step-by-step visualization of LLM-generated code in 

real-time, allowing users to understand, verify, and modify individual data operations. SEED 

(Chen et al., 2024) combines LLMs with methods like code generation and small models to 

produce domain-specific data curation solutions. HuggingGPT (Shen et al., 2024), on the 

other hand, uses LLMs to coordinate a variety of expert models from platforms such as 

Hugging Face, solving a broader range of AI tasks across multiple modalities. 

Lastly, in terms of industry applications, lots of companies have used agents in the business 

analysis. For example FUTU use AI to analyze the stock market and provide investment 

advice (FUTU, 2024). Julius (Julius, 2025) facilitates data science education by building a 

bridge that allowing professors to create interactive workflows for lessons, which can be 

shared with students for a seamless teaching experience through natural language interaction. 

Acc
ep

te
d 

M
an

us
cr

ipt



4 Data Analysis Through Natural Language Interaction: Case Studies 

In this section, we present a series of case studies conducted by a diverse range of agents, 

each illustrating the new data analysis paradigm facilitated through natural language 

interaction. These case studies demonstrate how this approach enables users to engage with 

data more intuitively and effectively, breaking down traditional barriers to data accessibility 

and understanding. By leveraging natural language processing, these agents can interpret and 

respond to complex queries, providing insights that are both comprehensive and easily 

digestible. Through these examples, we aim to highlight the transformative potential of 

natural language interaction in data analysis. 

4.1 Case study 1: Exploratory Data Analysis and Model Building by 

Conversational Data Agents 

In this case study, we utilized ChatGPT and LAMBDA to demonstrate exploratory data 

analysis (EDA) and a simple model building process. Specifically, we first used ChatGPT to 

explore the effect of alcohol content on the quality of different types of wine, focusing on 

both red and white varieties. Then, we used LAMBDA to illustrate an interactive modeling 

process and automatically generate analysis reports. 

We used the Wine Quality dataset, a tabular dataset with dimension 4898 11 . The goal is to 

examine how 10 coviarates in this dataset affect the wine quality rating. We employed 

ChatGPT-ADA to conduct EDA and visualize the influence of alcohol content on wine 

quality ratings. Figure 5 illustrates the detailed planning and problem-solving process. 

GPT-ADA first analyzed the problems and then outlined a step-by-step plan to solve the 

tasks. The entire workflow proceeded smoothly, with the code running efficiently to load the 

data, check for missing values, and generate visualizations, with each step delivering accurate 

results. Its ability to interpret data and provide insights significantly streamlined the 

analytical process. Finally, it provided insights into the relationship between quality scores 

and alcohol content. 

Next, we train a set of models to predict wine quality using LAMBDA. LAMBDA facilitates 

an interactive analysis process, enabling us to perform tasks such as data processing, feature 

engineering, model training, parameter tuning, and evaluation through a series of guided 

conversations. Finally, we used LAMBDA’s built-in report generation feature to compile a 

analysis report, which includes details of the tasks completed in the conversation history. The 

analysis process, including the conversation and the generated report, is presented in Figure 

6. 

As beginner-level users, we first asked LAMBDA to recommend some models, and it 

suggested advanced options like XGBoost. Next, we tasked LAMBDA with basic data 

preprocessing, which it handled correctly. We then trained and evaluated the recommended 

models using 5-fold cross-validation, a task LAMBDA performed exceptionally well, even 

providing download links for the resulting models. Finally, we used LAMBDA’s report 

generation feature to create a structured and comprehensive report that effectively captured 

the key insights. 

Acc
ep

te
d 

M
an

us
cr

ipt



This example demonstrates the effectiveness of conversational data agents like ChatGPT and 

LAMBDA in streamlining the data visualization and machine learning workflow, particularly 

for users without programming experience. 

4.2 Case Study 2: Residual Diagnostics and Heteroskedasticity Testing 

To examine the ability of LLM-based data agents to perform statistically rigorous regression 

diagnostics, we prompted LAMBDA and GPT-4o to conduct a linear regression analysis 

using the Auto MPG dataset, a tabular data with dimension of 398 times 7. The goal was to 

predict mpg (miles per gallon) based on vehicle characteristics, notably horsepower and 

weight. The prompt and response of LAMBDA are detailed in the figure 7. 

LAMBDA correctly loaded the dataset, performed appropriate preprocessing (e.g., handling 

non-numeric entries), and fit a linear model using statsmodels. It then computed and 

visualized residuals, followed by executing the Breusch–Pagan test for heteroskedasticity. 

The test output included the LM statistic and associated p-value, indicating a strong violation 

of the homoskedasticity assumption. 

The residual plot visually confirmed increasing residual variance with larger fitted values. 

LAMBDA also summarized next steps, suggesting robust standard errors or model 

transformation to address heteroskedasticity. This example demonstrates LAMBDA’s ability 

to execute, interpret, and communicate statistically meaningful diagnostics in a flexible code-

first environment. Besides, GPT-4o was also able to complete the same task successfully; 

further details and chat transcripts can be found in the supplementary materials.  

4.3 Case Study 3: Bootstrap Confidence Intervals 

In this case study, we assessed whether LLM-based data agents can perform non-parametric 

inference through bootstrap resampling. Using the Wine Quality dataset, the task was to 

estimate the average alcohol content for red wine and construct a 95% confidence interval 

using 1000 bootstrap resamples. Figure 7 shows the interaction with LAMBDA for 

completing this task. 

LAMBDA successfully filtered the dataset to isolate red wines, extracted the alcohol 

variable, and implemented the bootstrap routine by repeatedly sampling with replacement. It 

then computed the empirical 2.5th and 97.5th percentiles of the bootstrapped means to form 

the confidence interval. The agent also produced a histogram showing the bootstrap 

distribution, overlaid with the CI bounds and sample mean. 

This case illustrates that LAMBDA is capable of performing robust uncertainty quantification 

and generating high-quality visual explanations without relying on strict parametric 

assumptions. GPT-4o also successfully completed this task; its outputs and detailed 

interactions are included in the supplementary materials. 

We found that different prompting may lead to differences in implementation details, such as 

the choice of hyperparameters or types of plots. 

4.4 Case study 4: Expandability of Data Agents 

Acc
ep

te
d 

M
an

us
cr

ipt



In many situations, we encounter tasks that cannot be handled effectively using LLMs 

because their training data do not include the necessary knowledge for such tasks. In these 

cases, if a data agent is designed to be extensible, manual tool expansion or knowledge 

integration can address this limitation. In this case study, we demonstrate how both the Data 

Interpreter and LAMBDA leverage integration mechanisms to incorporate additional 

packages or domain-specific knowledge. 

Tools Integration in Data Interpreter In this example, our objective is to extract 

submission deadlines for AI conferences from a public website 
1
 and save the results. We 

prompted the agent with the target URL and the desired output format. The agent 

successfully identified relevant information such as conference names and deadlines and 

generated structured output. The complete workflow, including prompt, execution, and 

results, is shown in Figure 8. 

In this example, the Data Interpreter began with an initial plan. For each sub-task, it 

recommended relevant tools with a score indicating their suitability. The system then decided 

whether to use the suggested tool. For instance, it used scrape_web_playwright for a 

web-scraping task. This iterative recommendation and tool selection process continued until 

all sub-tasks were completed, addressing limitations in LLMs’ built-in abilities and 

knowledge. 

Knowledge Integration in LAMBDA In this example, we consider the problem of training a 

Fixed Point Non-Negative Neural Network (FPNNN), which is defined as a neural network 

that maps nonnegative vectors to nonnegative vectors. We train a FPNNN with MNIST data. 

First, we integrated the code into the knowledge base. Then, we defined the model as Core 

and delineated the Core function, which directly accepts parameters, and the Runnable 

function, which was defined and executed separately. Figure 6 presents the configuration, 

prompt, and problem-solving process. 

LAMBDA first retrieved the relevant code from the knowledge base, and then its Core 

function was presented in the context. By modifying the core code, LAMBDA generated the 

correct code and completed the task successfully. 

5 Challenges and Future Directions 

In this section, we highlight some challenges and suggest future directions in using LLMs or 

LLM-based data agents for statistical analysis.  

5.1 Challenges in the Capabilities of LLMs 

LLMs function as the “brain” of a data agent, interpreting user intent and generating 

structured plans to carry out data analysis tasks. For a data agent to be effective, it must 

possess advanced knowledge in statistics, data science, and programming, enabling it to 

support users throughout the analytical process. 

Advanced Models  Current state-of-the-art models like GPT-4 show strong performance 

on undergraduate-level mathematics and statistics problems, yet struggle with more 

advanced, graduate-level tasks (Frieder et al., 2023). Additionally, the success rate of fully 

automating complete data workflows with current agents remains low (Cao et al., 2024). This 

Acc
ep

te
d 

M
an

us
cr

ipt



suggests that enhancements in LLMs, particularly in knowledge of statistics and data 

analysis, are still needed. 

Multi-Modality and Reasoning A key challenge for current LLMs lies in processing multi-

modal inputs, including charts, tables, and code, which are essential to data analysis 

workflows (Inala et al., 2024). Future advancements may improve the ability to perform 

reasoning across mixed modalities, such as generating visualizations by replicating the style 

of an input visualization. 

5.2 Challenges in Statistical Analysis 

Intelligent Statistical Analysis Software While established tools such as SPSS and R are 

highly mature, data agents have the potential to transform statistical analysis through 

intelligent assistance. To realize this vision, agents must support flexible package integration, 

facilitate contributions from domain experts, and remain aligned with evolving programming 

ecosystems. Such a collaborative framework could accelerate innovation in the field. 

Furthermore, by guiding users and recommending appropriate methods, data agents can 

enhance research efficiency and expand access to advanced statistical techniques. 

Incorporating Other Large Models into Statistical Analysis Statistical analysis of 

complex data is increasingly leveraging representations generated by large models for 

research purposes. For example, in predicting the tertiary structure of proteins, LLMs can 

utilize representations of primary and secondary structures—capabilities that traditional 

statistical software such as Matlab and R currently lack. Similarly, in the analysis of 

electronic health records, LLMs are being used to construct meaningful representations that 

facilitate downstream analysis. If data agents can effectively harness domain-specific 

knowledge models, they have the potential to significantly advance statistical and data 

science research, enabling more sophisticated analyses and fostering deeper insights across 

scientific disciplines. 

5.3 Challenges in Real-World Adoption 

Although the data agents have shown great potential in improving the accessibility of data 

analysis, there are still several challenges that need to be addressed for real-world adoption. 

Trade-off Between Hardware and Privacy First, deploying large language models often 

requires high-performance computing resources. Running these models on CPU-only 

machines results in slow inference. API-based solutions also raise concerns about data 

privacy and security, as sensitive information may be transmitted to external servers. This is 

especially critical in fields such as healthcare and finance, where data confidentiality is 

paramount. Therefore, developing lightweight, expert-level data science models that can run 

efficiently on local machines without compromising performance is essential. 

High-concurrency System High-concurrency environments pose significant scalability 

issues. In client-server architectures where each user session is associated with an isolated 

sandbox for secure code execution, the server may experience substantial resource strain 

under heavy load. Maintaining a large number of concurrent sandboxes can overwhelm 

system resources, leading to degraded performance or system instability. Therefore, the 

Acc
ep

te
d 

M
an

us
cr

ipt



design of efficient scheduling algorithms to manage limited computational resources across 

multiple sandbox instances becomes critical. 

Integration with Existing Workflows While data agents excel in lowering the barrier to 

entry for non-programmers, they currently lack the flexibility and debugging capabilities of 

traditional IDEs. This makes them less suitable for complex, customized workflows that 

require iterative development and fine-grained control. A promising direction is to support 

the seamless export of an agent’s actions (Sun et al., 2024), such as executed code, into IDEs 

like Jupyter Notebooks, which can serve as a bridge for smoother integration with 

conventional tools and workflows.  

6 Discussion 

6.1 Model Level Reproducibility 

While data agents are generally robust to variations in prompt phrasing and can reliably 

complete the intended analytical tasks, we observed notable differences in their reasoning 

processes and implementation details. For example, when prompted to perform regression 

diagnostics, different phrasings such as “analyze residuals” versus “check model 

assumptions” resulted in the same core analysis but with different statistical tests or plotting 

choices. Similarly, in visualization tasks, one prompt might produce a bar chart while another 

yields a pie chart, depending on how the goal is described. Even for model training, default 

hyperparameters, such as learning rate or number of iterations, could vary slightly across 

prompts, leading to differences in performance metrics. These variations do not typically 

prevent task completion but can impact result interpretability, especially in rigorous statistical 

workflows where consistency across runs is critical. 

6.2 System Level Reproducibility 

Experiment Setting Experiment reproducibility can be enhanced through careful experiment 

designs. For example, LAMBDA (Sun et al., 2024) incorporates built-in mechanisms to 

export the full execution history into executable formats such as Jupyter Notebooks. When 

combined with proper experiment controls, such as setting random seeds, these exports 

enable end-to-end reproducibility of experimental results. In addition, designing human-in-

the-loop mechanisms allows users to inspect, edit, or revise the code generated by LLMs 

during the problem-solving process. This interactive approach further supports 

reproducibility by enabling manual correction and verification of intermediate steps. 

Version Control and Workflow Management Version control tools such as Git can 

enhance reproducibility by tracking changes in code, data, and prompts, making it easier to 

reproduce results and collaborate with others. Furthermore, workflow management systems 

like Snakemake and Nextflow allow users to define and automate each step of the analysis 

pipeline, ensuring that processes can be reliably repeated. When used alongside data agents, 

these tools can greatly improve both reproducibility and transparency. However, most current 

data agents lack native support for these tools, presenting opportunities for future 

development. 

7 Conclusion 

Acc
ep

te
d 

M
an

us
cr

ipt



This survey has explored the recent progress of LLM-based data science agents. These agents 

have shown great potential in making data analysis more accessible to a wider range of users, 

even those with limited technical skills. By leveraging the capabilities of LLMs, they are able 

to handle various data analysis tasks, from data visualization to machine learning, through 

natural language interaction. 

However, as discussed, they also face several challenges. In terms of model capabilities, 

improvements are needed in domain-specific knowledge and multi-modal handling. For 

intelligent statistical analysis software, seamless package management and community 

building are crucial. Additionally, effectively integrating other large models into statistical 

analysis and addressing data infrastructure and evaluation issues remain important areas for 

future development. 

Overall, while LLM-based data science agents have made significant strides, continuous 

research and innovation are required to overcome the existing challenges and fully realize 

their potential in revolutionizing the field of data analysis. 

Acknowledgments 

The authors are grateful to the Editor, Associate Editor and two anonymous reviewers for 

their valuable comments and suggestions, which significantly improved the quality of the 

paper. 

Funding 

This work was funded by the Centre for the Mathematical Foundations of Generative AI and 

the research grants from The Hong Kong Polytechnic University (P0046811). The research of 

Ruijian Han was partially supported by The Hong Kong RGC grant (14301821) and The 

Hong Kong Polytechnic University (P0044617, P0045351, P0050935). The research of 

Binyan Jiang was partially supported by The Hong Kong RGC grant (15302722). The 

research of Houduo Qi was partially supported by the Hong Kong RGC grant (15309223) and 

The Hong Kong Polytechnic University (P0045347). The research of Defeng Sun and 

Yancheng Yuan was partially supported by the Research Center for Intelligent Operations 

Research at The Hong Kong Polytechnic University (P0051214). The research of Jian Huang 

was partially supported by The Hong Kong Polytechnic University (P0042888, P0045417, 

P0045931). 

Disclosure Statement 

The authors report there are no competing interests to declare. 

References 

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Podstawski, M., Gianinazzi, L., Gajda, 

J., Lehmann, T., Niewiadomski, H., Nyczyk, P., et al. (2024). Graph of thoughts: Solving 

elaborate problems with large language models. In Proceedings of the AAAI Conference on 

Artificial Intelligence, volume 38, pages 17682–17690.  

Acc
ep

te
d 

M
an

us
cr

ipt



Cao, L. (2017). Data science: Challenges and directions. Communications of the ACM, 

60(8):59–68.  

Cao, R., Lei, F., Wu, H., Chen, J., Fu, Y., Gao, H., Xiong, X., Zhang, H., Mao, Y., Hu, W., 

Xie, T., Xu, H., Zhang, D., Wang, S., Sun, R., Yin, P., Xiong, C., Ni, A., Liu, Q., Zhong, V., 

Chen, L., Yu, K., and Yu, T. (2024). Spider2-v: How far are multimodal agents from 

automating data science and engineering workflows?  

Chandel, S., Clement, C. B., Serrato, G., and Sundaresan, N. (2022). Training and evaluating 

a jupyter notebook data science assistant. arXiv preprint arXiv:2201.12901.  

chapyter (2023). Chapyter. https://github.com/chapyter/chapyter.  

Chen, H., Chiang, R. H., and Storey, V. C. (2012). Business intelligence and analytics: From 

big data to big impact. MIS quarterly, 36(4):1165–1188.  

Chen, Z., Cao, L., Madden, S., Kraska, T., Shang, Z., Fan, J., Tang, N., Gu, Z., Liu, C., and 

Cafarella, M. (2024). Seed: Domain-specific data curation with large language models. arxiv 

2023. arXiv preprint arXiv:2310.00749.  

Cheng, L., Li, X., and Bing, L. (2023). Is gpt-4 a good data analyst? arXiv preprint 

arXiv:2305.15038.  

Cheng, Y., Zhang, C., Zhang, Z., Meng, X., Hong, S., Li, W., Wang, Z., Wang, Z., Yin, F., 

Zhao, J., et al. (2024). Exploring large language model based intelligent agents: Definitions, 

methods, and prospects. arXiv preprint arXiv:2401.03428.  

Chi, Y., Lin, Y., Hong, S., Pan, D., Fei, Y., Mei, G., Liu, B., Pang, T., Kwok, J., Zhang, C., et 

al. (2024). Sela: Tree-search enhanced llm agents for automated machine learning. arXiv 

preprint arXiv:2410.17238.  

Dash, T., Chitlangia, S., Ahuja, A., and Srinivasan, A. (2022). A review of some techniques 

for inclusion of domain-knowledge into deep neural networks. Scientific Reports, 12(1):1040.  

Dong, H. and Wang, Z. (2024). Large language models for tabular data: Progresses and 

future directions. In Proceedings of the 47th International ACM SIGIR Conference on 

Research and Development in Information Retrieval, SIGIR ’24, page 2997–3000, New 

York, NY, USA. Association for Computing Machinery.  

for Statistical Computing, R. F. (1995). R: A Language and Environment for Statistical 

Computing.  

Foundation, P. S. (1991). Python Programming Language.  

Frieder, S., Pinchetti, L., Chevalier, A., Griffiths, R.-R., Salvatori, T., Lukasiewicz, T., 

Petersen, P. C., and Berner, J. (2023). Mathematical capabilities of chatgpt.  

FUTU (2024). Futubull ai.  

Acc
ep

te
d 

M
an

us
cr

ipt



GLM, T. (2024). Chatglm: A family of large language models from glm-130b to glm-4 all 

tools.  

Google (2025). Data science agent in colab with gemini. 

https://developers.googleblog.com/en/data-science-agent-in-colab-with-gemini/. Accessed: 

2025.  

Grosnit, A., Maraval, A., Doran, J., Paolo, G., Thomas, A., Beevi, R. S. H. N., Gonzalez, J., 

Khandelwal, K., Iacobacci, I., Benechehab, A., et al. (2024). Large language models 

orchestrating structured reasoning achieve kaggle grandmaster level. arXiv preprint 

arXiv:2411.03562.  

Guo, S., Deng, C., Wen, Y., Chen, H., Chang, Y., and Wang, J. (2024). Ds-agent: Automated 

data science by empowering large language models with case-based reasoning. arXiv preprint 

arXiv:2402.17453.  

Hassan, M. M., Knipper, A., and Santu, S. K. K. (2023). Chatgpt as your personal data 

scientist. arXiv preprint arXiv:2305.13657.  

Hong, S., Lin, Y., Liu, B., Wu, B., Li, D., Chen, J., Zhang, J., Wang, J., Zhang, L., Zhuge, 

M., et al. (2024). Data interpreter: An llm agent for data science. arXiv preprint 

arXiv:2402.18679.  

Hu, X., Zhao, Z., Wei, S., Chai, Z., Ma, Q., Wang, G., Wang, X., Su, J., Xu, J., Zhu, M., et al. 

(2024). Infiagent-dabench: Evaluating agents on data analysis tasks. arXiv preprint 

arXiv:2401.05507.  

Huang, Q., Vora, J., Liang, P., and Leskovec, J. (2024a). Mlagentbench: Evaluating language 

agents on machine learning experimentation.  

Huang, X., Liu, W., Chen, X., Wang, X., Wang, H., Lian, D., Wang, Y., Tang, R., and Chen, 

E. (2024b). Understanding the planning of llm agents: A survey. arXiv preprint 

arXiv:2402.02716.  

IBM (1968). SPSS Statistics.  

Inala, J. P., Wang, C., Drucker, S., Ramos, G., Dibia, V., Riche, N., Brown, D., Marshall, D., 

and Gao, J. (2024). Data analysis in the era of generative ai. arXiv preprint 

arXiv:2409.18475.  

Inc., S. I. (1976). SAS Software.  

Institute, M. G. (2011). Big data: The next frontier for innovation, competition, and 

productivity. McKinsey & Company.  

Jiang, Z. et al. (2024). AIDE: the Machine Learning CodeGen Agent. 

https://github.com/WecoAI/aideml. Accessed: 2024-08-29.  

Jordan, M. I. and Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and 

prospects. Science, 349(6245):255–260.  

Acc
ep

te
d 

M
an

us
cr

ipt



Julius (2025). Julius ai.  

jupyterlab (2023). Jupyter-ai. https://github.com/jupyterlab/jupyter-ai.  

Kitchin, R. (2014). The data revolution: Big data, open data, data infrastructures and their 

consequences. Sage.  

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettlemoyer, L., tau Yih, S. W., Fried, D., 

Wang, S., and Yu, T. (2022). Ds-1000: A natural and reliable benchmark for data science 

code generation.  

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., 

Yih, W.-t., Rocktäschel, T., et al. (2020). Retrieval-augmented generation for knowledge-

intensive nlp tasks. Advances in Neural Information Processing Systems, 33:9459–9474.  

Li, Z., Zang, Q., Ma, D., Guo, J., Zheng, T., Niu, X., Yue, X., Wang, Y., Yang, J., Liu, J., et 

al. (2024). Autokaggle: A multi-agent framework for autonomous data science competitions. 

arXiv preprint arXiv:2410.20424.  

Liu, S.-C., Wang, S., Chang, T., Lin, W., Hsiung, C.-W., Hsieh, Y.-C., Cheng, Y.-P., Luo, S.-

H., and Zhang, J. (2023). Jarvix: A llm no code platform for tabular data analysis and 

optimization. In Proceedings of the 2023 Conference on Empirical Methods in Natural 

Language Processing: Industry Track, pages 622–630.  

Luo, D., Feng, C., Nong, Y., and Shen, Y. (2024). Autom3l: An automated multimodal 

machine learning framework with large language models. In Proceedings of the 32nd ACM 

International Conference on Multimedia, pages 8586–8594.  

Ma, P., Ding, R., Wang, S., Han, S., and Zhang, D. (2023). Insightpilot: An llm-empowered 

automated data exploration system. In Proceedings of the 2023 Conference on Empirical 

Methods in Natural Language Processing: System Demonstrations, pages 346–352.  

MathWorks (1984). MATLAB.  

Microsoft (1985). Microsoft Excel.  

Microsoft (2013). Power BI.  

Nejjar, M., Zacharias, L., Stiehle, F., and Weber, I. (2023). Llms for science: Usage for code 

generation and data analysis. Journal of Software: Evolution and Process, page e2723.  

OpenAI (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774.  

OpenAI (2024). Gpt-4o system card.  

Provost, F. and Fawcett, T. (2013). Data science and its relationship to big data and data-

driven decision making. Big data, 1(1):51–59.  

Acc
ep

te
d 

M
an

us
cr

ipt



Qiao, B., Li, L., Zhang, X., He, S., Kang, Y., Zhang, C., Yang, F., Dong, H., Zhang, J., 

Wang, L., et al. (2023). Taskweaver: A code-first agent framework. arXiv preprint 

arXiv:2311.17541.  

Shen, Y., Song, K., Tan, X., Li, D., Lu, W., and Zhuang, Y. (2024). Hugginggpt: Solving ai 

tasks with chatgpt and its friends in hugging face. Advances in Neural Information 

Processing Systems, 36.  

Steffensen, J. L., Dufault-Thompson, K., and Zhang, Y. (2016). Psamm: A portable system 

for the analysis of metabolic models. PLOS Computational Biology, 12(2):1–29.  

Sun, M., Han, R., Jiang, B., Qi, H., Sun, D., Yuan, Y., and Huang, J. (2024). Lambda: A 

large model based data agent. arXiv preprint arXiv:2407.17535.  

Trirat, P., Jeong, W., and Hwang, S. J. (2024). Automl-agent: A multi-agent llm framework 

for full-pipeline automl. arXiv preprint arXiv:2410.02958.  

Tu, X., Zou, J., Su, W. J., and Zhang, L. (2023). What should data science education do with 

large language models?  

Waller, M. A. and Fawcett, S. E. (2016). Data science, predictive analytics, and big data: A 

revolution that will transform supply chain design and management. Journal of Business 

Logistics, 37(1):55–62.  

Wang, C., Lee, B., Drucker, S., Marshall, D., and Gao, J. (2024a). Data formulator 2: 

Iteratively creating rich visualizations with ai. arXiv preprint arXiv:2408.16119.  

Wang, X., Chen, Y., Yuan, L., Zhang, Y., Li, Y., Peng, H., and Ji, H. (2024b). Executable 

code actions elicit better llm agents. arXiv preprint arXiv:2402.01030.  

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. 

(2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in 

neural information processing systems, 35:24824–24837.  

Witten, I. H., Frank, E., and Hall, M. A. (2016). Data Mining: Practical machine learning 

tools and techniques. Morgan Kaufmann.  

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Zhang, S., Zhu, E., Li, B., Jiang, L., Zhang, X., and 

Wang, C. (2023). Autogen: Enabling next-gen llm applications via multi-agent conversation 

framework. arXiv preprint arXiv:2308.08155.  

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang, M., Wang, J., Jin, S., Zhou, 

E., et al. (2023). The rise and potential of large language model based agents: A survey. arXiv 

preprint arXiv:2309.07864.  

Xie, L., Zheng, C., Xia, H., Qu, H., and Zhu-Tian, C. (2024). Waitgpt: Monitoring and 

steering conversational llm agent in data analysis with on-the-fly code visualization. arXiv 

preprint arXiv:2408.01703.  

Acc
ep

te
d 

M
an

us
cr

ipt



Xie, T., Zhou, F., Cheng, Z., Shi, P., Weng, L., Liu, Y., Hua, T. J., Zhao, J., Liu, Q., Liu, C., 

et al. (2023). Openagents: An open platform for language agents in the wild. arXiv preprint 

arXiv:2310.10634.  

Yang, Z., Zhou, Z., Wang, S., Cong, X., Han, X., Yan, Y., Liu, Z., Tan, Z., Liu, P., Yu, D., et 

al. (2024). Matplotagent: Method and evaluation for llm-based agentic scientific data 

visualization. arXiv preprint arXiv:2402.11453.  

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., and Narasimhan, K. (2024). Tree 

of thoughts: Deliberate problem solving with large language models. Advances in Neural 

Information Processing Systems, 36.  

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., and Cao, Y. (2022). React: 

Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629.  

Zhang, C., Li, L., He, S., Zhang, X., Qiao, B., Qin, S., Ma, M., Kang, Y., Lin, Q., Rajmohan, 

S., et al. (2024). Ufo: A ui-focused agent for windows os interaction. arXiv preprint 

arXiv:2402.07939.  

Zhang, L., Zhang, Y., Ren, K., Li, D., and Yang, Y. (2023a). Mlcopilot: Unleashing the 

power of large language models in solving machine learning tasks. arXiv preprint 

arXiv:2304.14979.  

Zhang, W., Shen, Y., Lu, W., and Zhuang, Y. (2023b). Data-copilot: Bridging billions of data 

and humans with autonomous workflow. arXiv preprint arXiv:2306.07209.  

Zhou, X., Zhao, X., and Li, G. (2024). Llm-enhanced data management. arXiv preprint 

arXiv:2402.02643.  

Notes 

1
 https://aideadlin.es  

Figure 1: New paradigm of data analysis brought by generative AI. 

Acc
ep

te
d 

M
an

us
cr

ipt



 

Figure 2: Timeline of selected related works from 2023. 

 

Figure 3: An architecture of an LLM-based data agent. The diagram illustrates the interaction 

between LLMs and a sandbox environment. On the left, key components of LLMs are 

highlighted, including User Interface, Planning, Reasoning, Reflection, and Error Handling. 

The sandbox, positioned centrally, serves as a controlled environment for executing task 

codes and generating results. On the right, various tools and software that can be pre-installed 

Acc
ep

te
d 

M
an

us
cr

ipt



in the sandbox, such as Python, SQL, Jupyter, and R, indicate the diverse ecosystems where 

LLM-powered agents can operate. 

 

Figure 4: Commonly used planning and reasoning strategies in LLM-based data agents for 

organizing tasks or solving problems. Each node represents a sub-task in the roadmap. 

 

Figure 5: Partial dialogue from the ChatGPT-Advanced Data Analysis in Case Study 1. Items 

1-4 list the work done by ChatGPT in each step. 

Acc
ep

te
d 

M
an

us
cr

ipt



 

Figure 6: Conversational machine learning and report generation by LAMBDA. Excerpt from 

a partial dialogue. 

Acc
ep

te
d 

M
an

us
cr

ipt



 

Figure 7: Partial dialogue from residual diagnostics and heteroskedasticity testing, and 

bootstrap confidence interval estimation. 

Acc
ep

te
d 

M
an

us
cr

ipt



 

Figure 8: Creating and using the customized tool in the Data Interpreter. Excerpt from a 

partial dialogue. 

Acc
ep

te
d 

M
an

us
cr

ipt



 

Figure 9: Integrating knowledge of FPNNNs in LAMBDA. Excerpt from a partial dialogue. 

Acc
ep

te
d 

M
an

us
cr

ipt



 

 

 

 

Table 1: Characteristics of selected data agents. Methods can be categorized into 

Conversational and End-to-End approaches. Conversational methods support interactive 

dialogue with iterative user feedback, whereas End-to-End approaches rely on a single 

prompt, with the agent autonomously planning and solving the problem. The user interface 

can be categorized into IDE-based, Systems, CLI, and OS-based. The term “Human-in-the-

Loop” indicates that humans can intervene in the data agent’s workflow, such as modifying 

code in situations where automatic processes are inadequate. “Self-Correcting” refers to the 

agent’s ability to automatically identify and correct errors within the workflow through 

reflection. Finally, “Expandable” denotes the data agent’s capacity to incorporate customized 

tools or knowledge. “-” indicates that the attribute is either not mentioned in the paper or 

could not be observed from the provided resources. 

Acc
ep

te
d 

M
an

us
cr

ipt



Data Agents Methods 
User 

Interface 
Planning 

Human in 

the Loop 

Self-

correcting 
Expandable 

ChatGPT-ADA (OpenAI, 

2023)  
Conversational System Linear ✗ X  ✗ 

Data Copilot (Zhang et 

al., 2023b)  
End-to-end System Linear ✗ X  ✗ 

Jupyter AI (jupyterlab, 

2023)  
Conversational IDE-based Basic IO X   ✗ ✗ 

MLCopilot (Zhang et al., 

2023a)  
Conversational IDE-based Basic IO X  ✗ ✗ 

Chapyter (chapyter, 

2023)  
Conversational IDE-based Basic IO X  ✗ ✗ 

Openagents (Xie et al., 

2023)  
Conversational System Linear ✗ ✗ X  

JarviX (Chen et al., 2024)  End-to-end - - - - - 

DS-Agent (Guo et al., 

2024)  
End-to-end CLI Linear ✗ X  

- 

Spider2-V (Cao et al., 

2024)  
End-to-end OS-Based - ✗ X  

- 

ChatGLM-DA (GLM, 

2024)  
Conversational System Linear ✗ X  ✗ 

TaskWeaver (Qiao et al., 

2023)  
End-to-end 

CLI & 

System 
Linear ✗ X  X  

Data Interpreter (Hong 

et al., 2024)  
End-to-end CLI Hierarchical X  X  X  

LAMBDA (Sun et al., 

2024)  
Conversational System Basic IO X  X  X  

Data Formulator 2 

(Wang et al., 2024a)  
Conversational System Basic IO ✗ X  

- 

AutoM3L (Luo et al., 

2024)  
End-to-end - - ✗ - X  

SELA (Chi et al., 2024)  End-to-end CLI Hierarchical ✗ X  

- 

AIDE (Jiang et al., 2024)  End-to-end CLI Hierarchical ✗ X  

- 

AutoKagle (Li et al., End-to-end CLI Linear X  X  X  

Acc
ep

te
d 

M
an

us
cr

ipt



2024)  

AutoML-Agent (Trirat et 

al., 2024)  
End-to-end - Linear - X  

- 

Agent K v1.0 (Grosnit et 

al., 2024)  
End-to-end - Linear - X  ✗ 

GPT-4o (OpenAI, 2024)  End-to-end System - ✗ X  X  

AutoGen Studio (Wu et 

al., 2023)  
End-to-end System Linear ✗ X  X  

Colab Data Science 

Agent (Google, 2025)  
End-to-end IDE-based Linear X  X  

✗ 

 

Acc
ep

te
d 

M
an

us
cr

ipt


	A Survey on Large Language Model-based Agents for Statistics and Data Science
	Notes


